题目内容
【题目】已知函数.
(1)求函数的单调区间;
(2)若不等式时恒成立,求的取值范围.
【答案】(1)见解析;(2)
【解析】
(1)本题首先可以对函数进行求导,然后通过对以及两种情况进行分类讨论,分别求出每一种情况下函数的单调性,即可得出结果;
(2)本题首先可以将不等式在时恒成立转化为在时恒成立,然后令,再对函数的导函数的性质进行分类讨论,即可得出结果。
(1),
①若,,在上单调递增;
②若,当时,,当时,,
所以是函数的单调递增区间,是函数的单调减区间,
综上所述,当时,的单调递增区间为;
当时,的单调递增区间为,单调递减区间为。
(2)由题意可知,不等式可转化为在时恒成立,
令,
,
①若,则,在上单调递减,
所以,不等式恒成立等价于,即;
②若,则,当时,,当时,,
在上单调递减,在上单调递增,
所以,不符合题意;
③若,当时,,在上单调递增,
所以,不符合题意;
综上所述,。
【题目】某电视台问政直播节目首场内容是“让交通更顺畅”.A、B、C、D四个管理部门的负责人接受问政,分别负责问政A、B、C、D四个管理部门的现场市民代表(每一名代表只参加一个部门的问政)人数的条形图如下.为了了解市民对武汉市实施“让交通更顺畅”几个月来的评价,对每位现场市民都进行了问卷调查,然后用分层抽样的方法从调查问卷中抽取20份进行统计,统计结果如下面表格所示:
满意 | 一般 | 不满意 | |
A部门 | 50% | 25% | 25% |
B部门 | 80% | 0 | 20% |
C部门 | 50% | 50% | 0 |
D部门 | 40% | 20% | 40% |
(1)若市民甲选择的是A部门,求甲的调查问卷被选中的概率;
(2)若想从调查问卷被选中且填写不满意的市民中再选出2人进行电视访谈,求这两人中至少有一人选择的是D部门的概率.
【题目】某单位鼓励员工参加健身运动,推广了一款手机软件,记录每人每天走路消耗的卡路里;软件的测评人员从员工中随机地选取了40人(男女各20人),记录他们某一天消耗的卡路里,并将数据整理如下:
(1)已知某人一天的走路消耗卡路里超过180千卡被评测为“积极型”,否则为“懈怠型”,根据题中数据完成下面的列联表,并据此判断能否有99%以上把握认为“评定类型”与“性别”有关?
(2)若测评人员以这40位员工每日走路所消耗的卡路里的频率分布来估计其所有员工每日走路消耗卡路里的频率分布,现在测评人员从所有员工中任选2人,其中每日走路消耗卡路里不超过120千卡的有人,超过210千卡的有人,设,求的分布列及数学期望.
附: ,其中.
参考数据:
0.10 | 0.05 | 0.025 | 0.010 | |
2.706 | 3.841 | 5.024 | 6.635 |