题目内容
【题目】中国国际智能产业博览会(智博会)每年在重庆市举办一届,每年参加服务的志愿者分“嘉宾”、“法医”等若干小组,年底,来自重庆大学、西南大学、重庆医科大学、西南政法大学的500名学生在重庆科技馆多功能厅参加了“志愿者培训”,如图是四所大学参加培训人数的不完整条形统计图,现用分层抽样的方法从中抽出20人作为2019年中国国际智博会服务的志愿者.
(1)分别求出从重庆大学、西南大学、重庆医科大学、西南政法大学抽出的志愿者人数;
(2)若“嘉宾”小组的2名志愿者只能从重庆医科大学或西南政法大学抽出,求这2人分别来自不同大学的概率(结果用分数表示).
【答案】(1)6,8,4,2;(2).
【解析】
(1)根据分层抽样的特点,分别计算出所求的人数;(2)将全部的情况列出来,然后得到符合要求的情况,根据古典概型的公式,得到概率.
(1)由题意得:
从重庆大学、西南大学、重庆医科大学、西南政法大学抽出的志愿者人数分别为:
人,人,人,人.
(2)设重庆医科大学的四名志愿者分别为,,,,
西南政法大学的两名志愿者分别为,
则共有:,,,,,,,,,,,,,,,共15种情况,
其中分别来自不同大学的有:,,,,,,,,共8种情况,
所以,这2人分别来自不同大学的概率为:.
【题目】自由购是通过自助结算方式购物的一种形式.某大型超市为调查顾客使用自由购的情况,随机抽取了100人,统计结果整理如下:
20以下 | [20,30) | [30,40) | [40,50) | [50,60) | [60,70] | 70以上 | |
使用人数 | 3 | 12 | 17 | 6 | 4 | 2 | 0 |
未使用人数 | 0 | 0 | 3 | 14 | 36 | 3 | 0 |
(Ⅰ)现随机抽取1名顾客,试估计该顾客年龄在且未使用自由购的概率;
(Ⅱ)从被抽取的年龄在使用自由购的顾客中,随机抽取3人进一步了解情况,用表示这3人中年龄在的人数,求随机变量的分布列及数学期望;
(Ⅲ)为鼓励顾客使用自由购,该超市拟对使用自由购的顾客赠送1个环保购物袋.若某日该超市预计有5000人购物,试估计该超市当天至少应准备多少个环保购物袋.