题目内容
【题目】观察下表:
1,
2,3,
4,5,6,7,
8,9,10,11,12,13,14,15,
……
问:(1)此表第n行的第一个数与最后一个数分别是多少?
(2)此表第n行的各个数之和是多少?
(3)2012是第几行的第几个数?
【答案】(1)(2)(3)第11行的第989个数
【解析】(1)每行依次构成等差数列,公差为1,第一列从上到下依次构成等比数列,首项为1,公比为2,根据此规律写出结果,(2)根据等差数列求和公式求和,(3)先判断在第几行,再根据等差数列确定第几列.
此表n行的第1个数为第n行共有个数,依次构成公差为1的等差数列:
(1)由等差数列的通项公式,此表第n行的最后一个数是;(2)由等差数列的求和公式,此表第n行的各个数之和为
或
(3)设2012在此数表的第n行.
则可得
故2012在此数表的第11行.
设2012是此数表的第11行的第m个数,而第11行的第1个数为210,
因此,2012是第11行的第989个数.
练习册系列答案
相关题目
【题目】某位同学进行寒假社会实践活动,为了对白天平均气温与某奶茶店的某种饮料销量之间的关系进行分析研究,他分别记录了1月11日至1月15日的白天平均气温x(°C)与该小卖部的这种饮料销量y(杯),得到如下数据:
日 期 | 1月11日 | 1月12日 | 1月13日 | 1月14日 | 1月15日 |
平均气温x(°C) | 9 | 10 | 12 | 11 | 8 |
销量y(杯) | 23 | 25 | 30 | 26 | 21 |
(Ⅰ)若先从这五组数据中抽出2组,求抽出的2组数据恰好是相邻2天数据的概率;
(Ⅱ)请根据所给五组数据,求出y关于x的线性回归方程 = x+ ;
(Ⅲ)根据(Ⅱ)中所得的线性回归方程,若天气预报1月16日的白天平均气温7(°C),请预测该奶茶店这种饮料的销量.
(参考公式: = , = ﹣ )