题目内容
【题目】以直角坐标系的原点O为极点,x轴正半轴为极轴,并在两种坐标系中取相同的长度单位,已知直线l的参数方程为 ,(t为参数,0<θ<π),曲线C的极坐标方程为ρsin2θ﹣2cosθ=0.
(1)求曲线C的直角坐标方程;
(2)设直线l与曲线C相交于A,B两点,当θ变化时,求|AB|的最小值.
【答案】
(1)解:由ρsin2θ﹣2cosθ=0,得ρ2sin2θ=2ρcosθ.
∴曲线C的直角坐标方程为y2=2x
(2)解:将直线l的参数方程代入y2=2x,得t2sin2θ﹣2tcosθ﹣1=0.
设A,B两点对应的参数分别为t1,t2,
则 , ,
= = .
当 时,|AB|的最小值为2
【解析】(1)利用极坐标与直角坐标的转化方法,求曲线C的直角坐标方程;(2)将直线l的参数方程代入y2=2x,得t2sin2θ﹣2tcosθ﹣1=0,利用参数的几何意义,求|AB|的最小值.
【题目】学校为了了解高三学生每天自主学习中国古典文学的时间,随机抽取了高三男生和女生各50名进行问卷调查,其中每天自主学习中国古典文学的时间超过3小时的学生称为“古文迷”,否则为“非古文迷”,调查结果如表:
古文迷 | 非古文迷 | 合计 | |
男生 | 26 | 24 | 50 |
女生 | 30 | 20 | 50 |
合计 | 56 | 44 | 100 |
(Ⅰ)根据表中数据能否判断有60%的把握认为“古文迷”与性别有关?
(Ⅱ)现从调查的女生中按分层抽样的方法抽出5人进行调查,求所抽取的5人中“古文迷”和“非古文迷”的人数;
(Ⅲ)现从(Ⅱ)中所抽取的5人中再随机抽取3人进行调查,记这3人中“古文迷”的人数为ξ,求随机变量ξ的分布列与数学期望.
参考公式:K2= ,其中n=a+b+c+d.
参考数据:
P(K2≥k0) | 0.50 | 0.40 | 0.25 | 0.05 | 0.025 | 0.010 |
k0 | 0.455 | 0.708 | 1.321 | 3.841 | 5.024 | 6.635 |