题目内容

【题目】以直角坐标系的原点O为极点,x轴正半轴为极轴,并在两种坐标系中取相同的长度单位,已知直线l的参数方程为 ,(t为参数,0<θ<π),曲线C的极坐标方程为ρsin2θ﹣2cosθ=0.
(1)求曲线C的直角坐标方程;
(2)设直线l与曲线C相交于A,B两点,当θ变化时,求|AB|的最小值.

【答案】
(1)解:由ρsin2θ﹣2cosθ=0,得ρ2sin2θ=2ρcosθ.

∴曲线C的直角坐标方程为y2=2x


(2)解:将直线l的参数方程代入y2=2x,得t2sin2θ﹣2tcosθ﹣1=0.

设A,B两点对应的参数分别为t1,t2

= =

时,|AB|的最小值为2


【解析】(1)利用极坐标与直角坐标的转化方法,求曲线C的直角坐标方程;(2)将直线l的参数方程代入y2=2x,得t2sin2θ﹣2tcosθ﹣1=0,利用参数的几何意义,求|AB|的最小值.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网