题目内容
【题目】(1)设0<x<,求函数y=x(3﹣2x)的最大值;
(2)解关于x的不等式x2-(a+1)x+a<0.
【答案】(1)(2)见解析
【解析】
(1)由题意利用二次函数的性质,求得函数的最大值.
(2)不等式即(x﹣1)(x﹣a)<0,分类讨论求得它的解集.
(1)设0<x,∵函数y=x(3﹣2x)2,故当x时,函数取得最大值为.
(2)关于x的不等式x2﹣(a+1)x+a<0,即(x﹣1)(x﹣a)<0.
当a=1时,不等式即 (x﹣1)2<0,不等式无解;
当a>1时,不等式的解集为{x|1<x<a};
当a<1时,不等式的解集为{x|a<x<1}.
综上可得,当a=1时,不等式的解集为,当a>1时,不等式的解集为{x|1<x<a},当a<1时,不等式的解集为{x|a<x<1}.
【题目】高铁、网购、移动支付和共享单车被誉为中国的“新四大发明”,彰显出中国式创新的强劲活力.某移动支付公司从我市移动支付用户中随机抽取100名进行调查,得到如下数据:
每周移动支付次数 | 1次 | 2次 | 3次 | 4次 | 5次 | 6次及以上 |
男 | 10 | 8 | 7 | 3 | 2 | 15 |
女 | 5 | 4 | 6 | 4 | 6 | 30 |
合计 | 15 | 12 | 13 | 7 | 8 | 45 |
(Ⅰ)把每周使用移动支付超过3次的用户称为“移动支付活跃用户”,由以上数据完成下列列联表,并判断能否在犯错误的概率不超过0.005的前提下,认为“移动支付活跃用户”与性别有关?
移动支付活跃用户 | 非移动支付活跃用户 | 总计 | |
男 | |||
女 | |||
总计 | 100 |
(Ⅱ)把每周使用移动支付6次及6次以上的用户称为“移动支付达人”.为了做好调查工作,决定用分层抽样的方法从“移动支付达人”中抽取6人进行问卷调查,再从这6人中选派2人参加活动.求参加活动的2人性别相同的概率?
附公式及表如下:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |