题目内容

【题目】已知正三棱锥P﹣ABC,点P,A,B,C都在半径为 的球面上,若PA,PB,PC两两垂直,则球心到截面ABC的距离为

【答案】
【解析】解:∵正三棱锥P﹣ABC,PA,PB,PC两两垂直,
∴此正三棱锥的外接球即以PA,PB,PC为三边的正方体的外接圆O,
∵圆O的半径为
∴正方体的边长为2,即PA=PB=PC=2
球心到截面ABC的距离即正方体中心到截面ABC的距离
设P到截面ABC的距离为h,则正三棱锥P﹣ABC的体积V= SABC×h= SPAB×PC= × ×2×2×2=
△ABC为边长为2 的正三角形,SABC= ×
∴h= =
∴正方体中心O到截面ABC的距离为 =
所以答案是
【考点精析】掌握球内接多面体是解答本题的根本,需要知道球的内接正方体的对角线等于球直径;长方体的外接球的直径是长方体的体对角线长.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网