题目内容

在长方体ABCD-A1B1C1D1中,AB=4,BC=2,CC1=3,
CE
=2
EC1

(1)求点D1到平面BDE的距离;
(2)求直线A1B与平面BDE所成角的正弦值.
(1)如图建立空间直角坐标系:
D(0,0,0),B(2,4,0),E(0,4,2),D1(0,0,3),
DB
=(2,4,0),
DE
=(0,4,2)
DD1
=(0,0,3)
设面DBE的法向量为
n
=(x,y,z)

n
DB
n
DE
2x+4y=0
4y+2z=0

令y=1,则x=-2,z=-2.
n
=(-2,1,-2)
d=|
DD1
n
|
n
|
|=|
(0,0,3)•(-2,1,-2)
3
|=2

(2)A1(2,0,3),B(2,4,0),
A1B
=(0,4,-3)

设直线A1B与平面BDE所成的角为θ则sinθ=|cos<
A1B
n
>|=
|
A1B
n
|
|
A1B
||
n
|
=
10
5×3
=
2
3

所以直线A1B与平面BDE所成角的正弦值为
2
3

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网