题目内容

在四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点.
(1)证明:CD⊥AE;
(2)证明:PD⊥平面ABE;
(3)求二面角B-PC-D的余弦值.
证明:(1)PA⊥底面ABCD,
∴CD⊥PA.
又CD⊥AC,PA∩AC=A,
∴CD⊥面PAC,AE?面PAC,
∴CD⊥AE.
(2)PA=AB=BC,∠ABC=60°,
∴PA=AC,E是PC的中点,
∴AE⊥PC,
由(1)知CD⊥AE,从而AE⊥面PCD,
∴AE⊥PD.易知BA⊥PD,
∴PD⊥面ABE.
(3)由题可知PA,AB,AD两两垂直,如图建立空间直角坐标系,
设AB=2,则B(2,0,0),C(1,
3
,0),P(0,0,2),D(0,
4
3
,0)
设平面PBC的一个法向量为
m
=(x,y,z),
PB
=(2,0,-2),
BC
=(-1,
3
,0)
PB
m
=0
BC
m
=0
,即
2x-2z=0
-x+
3
y=0

取y=
3
,则x=z=3
m
=(3,
3
,3)
设面PDC的一个法向量为
n
=(x,y,z)
PC
=(1,
3
,-2)
PD
=(0,
4
3
,-2)

PC
n
=0
PD
n
=0
,即
x+
3
y-2z=0
4
3
y-2z=0

y=
3
,则x=1,z=2,
n
=(1,
3
,2)

cos<
m
n
>=
m
n
|
m
||
n
|
=
3+3+6
21
8
=
42
7

由图可知钝二面角B-PC-D的余弦值为-
42
7
.(12分)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网