题目内容
如图,四棱锥P-ABCD的底面是正方形,PA⊥底面ABCD,PA=2,∠PDA=45,点E、F分别为棱AB、PD的中点.

(1)求证:AF∥平面PCE;
(2)求三棱锥C-BEP的体积.
(1)求证:AF∥平面PCE;
(2)求三棱锥C-BEP的体积.
(1)详见解析;(2)三棱锥
的体积为
.
试题分析:(1)求证:
试题解析:(1)证明:取PC的中点G,连接GF,因为F为PD的中点,
所以,GF∥CD且
所以,AE∥CD且
所以,AEGF是平行四边形,故AF∥EG,而
(2)因为PA⊥底面ABCD,所以,PA是三棱锥P-EBC的高,PA⊥AD,PA=2,
∠PDA=450,所以,AD=2,正方形ABCD中,E为AB的中点,所以,EB=1,故
故三棱锥C-BEP的体积为
练习册系列答案
相关题目