题目内容

.如图,在长方体ABCD-A1B1C1D1中,AB=BC=2,AA1=1,则BC1与平面BB1D1D所成角的余弦值为
 
A.B.C.D.
C

分析:连接A1C1交B1D1于点O,连接BO,在长方体中由AB=BC=2,可得CO1⊥B1D1,由长方体的性质可证有OC1⊥BB1,且
由直线与平面垂直的判定定理可得OC1⊥平面BB1D1D,则∠C1BO为则BC1与平面BB1D1D所成角
在Rt△BOC1中,可求
解:连接A1C1交B1D1于点O,连接BO
由AB=BC=2,可得A1B1C1D1为正方形即CO1⊥B1D1
由长方体的性质可知BB1⊥面A1B1C1D1,从而有OC1⊥BB1,且BB1∩B1D1=B1
∴OC1⊥平面BB1D1D
则∠C1BO为则BC1与平面BB1D1D所成角
在Rt△BOC1中,OC1=,BC1=OB=
∴cos∠OBC1===
故选C.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网