题目内容

5.设向量$\overrightarrow{a}$⊥$\overrightarrow{b}$,$\overrightarrow{c}$=$\overrightarrow{a}$+3$\overrightarrow{b}$.若向量$\overrightarrow{c}$与$\overrightarrow{a}$+$\overrightarrow{b}$的夹角为θ,则cosθ的最小值等于$\frac{\sqrt{3}}{2}$.

分析 设|$\overrightarrow{b}$|=x|$\overrightarrow{a}$|,(x>0),利用向量垂直以及向量的夹角公式,结合基本不等式进行求解即可得到结论.

解答 解:设|$\overrightarrow{b}$|=x|$\overrightarrow{a}$|,(x>0),
∵$\overrightarrow{a}$⊥$\overrightarrow{b}$,$\overrightarrow{c}$=$\overrightarrow{a}$+3$\overrightarrow{b}$.
∴$\overrightarrow{a}$•$\overrightarrow{b}$=0,|$\overrightarrow{c}$|=|$\overrightarrow{a}$+3$\overrightarrow{b}$|=$\sqrt{{\overrightarrow{a}}^{2}+9{\overrightarrow{b}}^{2}}$=$\sqrt{{\overrightarrow{a}}^{2}+9{x}^{2}{\overrightarrow{a}}^{2}}$=$\sqrt{1+9{x}^{2}}$|$\overrightarrow{a}$|,
|$\overrightarrow{a}$+$\overrightarrow{b}$|=$\sqrt{{\overrightarrow{a}}^{2}+{\overrightarrow{b}}^{2}}$=$\sqrt{{\overrightarrow{a}}^{2}+{x}^{2}{\overrightarrow{a}}^{2}}$=$\sqrt{1+{x}^{2}}$|$\overrightarrow{a}$|,
$\overrightarrow{c}$•($\overrightarrow{a}$+$\overrightarrow{b}$)=($\overrightarrow{a}$+3$\overrightarrow{b}$)•($\overrightarrow{a}$+$\overrightarrow{b}$)=${\overrightarrow{a}}^{2}$+3${\overrightarrow{b}}^{2}$=|$\overrightarrow{a}$|2+3x2|$\overrightarrow{a}$|2=(1+3x2)|$\overrightarrow{a}$|2
则cosθ=$\frac{\overrightarrow{c}•(\overrightarrow{a}+\overrightarrow{b})}{|\overrightarrow{c}||\overrightarrow{a}+\overrightarrow{b}|}$$\frac{(1+3{x}^{2})|\overrightarrow{a}{|}^{2}}{\sqrt{1+9{x}^{2}}•\sqrt{1+{x}^{2}}|\overrightarrow{a}{|}^{2}}$=$\frac{1+3{x}^{2}}{\sqrt{1+10{x}^{2}+9{x}^{2}}}$
=$\sqrt{\frac{1+6{x}^{2}+9{x}^{4}}{1+10{x}^{2}+9{x}^{4}}}$=$\sqrt{\frac{1+10{x}^{2}+9{x}^{4}-4{x}^{2}}{1+10{x}^{2}+9{x}^{4}}}$=$\sqrt{1-\frac{4{x}^{2}}{1+10{x}^{2}+9{x}^{4}}}$
=$\sqrt{1-\frac{4}{\frac{1}{{x}^{2}}+9{x}^{2}+10}}$≥$\sqrt{1-\frac{4}{2\sqrt{\frac{1}{{x}^{2}}•9{x}^{2}}+10}}$=$\sqrt{1-\frac{4}{16}}$=$\sqrt{1-\frac{1}{4}}$=$\sqrt{\frac{3}{4}}$=$\frac{\sqrt{3}}{2}$,
故cosθ的最小值等于$\frac{\sqrt{3}}{2}$,
故答案为:$\frac{\sqrt{3}}{2}$

点评 本题主要考查向量的数量积的应用以及基本不等式求最值,考查学生的运算能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网