题目内容

【题目】已知向量=(sin(A-B),2cosA)=(1,cos(-B)),且=-sin2C,其中A、B、C分别为△ABC的三边a、b、c所对的角.
(Ⅰ)求角C的大小;
(Ⅱ)若sinA+sinB=sinC,且 , 求c.

【答案】解:(Ⅰ)∵=(sin(A﹣B),2cosA),=(1,cos(﹣B)),
=sin(A﹣B)+2cosAcos(﹣B)=sin(A+B),
又∵=﹣2sin2C,
∴sin(A+B)=﹣sin2C,
∵sin(A+B)=sinC,
∴sinC=﹣sin2C=﹣2sinCcosC,
∵0<C<π,
∴sinC≠0,
∴cosC=﹣
又∵0<C<π,
∴C=
(Ⅱ)∵sinA+sinB=sinC,由正弦定理得a+b=c,(1);
S△ABC=absinC=ab=4,得ab=16,(2)
由余弦定理c2=a2+b2﹣2abcosC,得c2=a2+b2+ab,(3)
由(1)(2)(3)可得c=4
【解析】(Ⅰ)A、B、C为△ABC的内角,利用向量数量积的坐标运算可求得=sin(A+B),与已知=﹣2sin2C联立,即可求得角C的大小;
(Ⅱ)利用正弦定理知,a+b=c;由S△ABC=absinC=4可得ab=16,再由余弦定理c2=a2+b2﹣2abcosC即可求得c的值.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网