题目内容
【题目】如图,在直三棱柱ABC﹣A1B1C1中,AA1=AC=2AB=2,且BC1⊥A1C.
(Ⅰ)求证:平面ABC1⊥平面A1C1CA;
(Ⅱ)设D是A1C1的中点,判断并证明在线段BB1上是否存在点E,使DE∥平面ABC1;若存在,求三棱锥E﹣ABC1的体积.
【答案】证明:(I)在直三棱柱ABC﹣A1B1C1中,有AA1⊥平面ABC.
∴AA1⊥AC,又AA1=AC,∴A1C⊥AC1 .
又BC1⊥A1C,∴A1C⊥平面ABC1 ,
∵A1C平面A1C1CA,
∴平面ABC1⊥平面A1C1CA.
(II)解:取AA1中点F,连EF,FD,当E为B1B中点时,EF∥AB,DF∥AC1 .
即平面EFD∥平面ABC1 , 则有ED∥平面ABC1 .
当E为中点时,V E﹣ABC1=VC1﹣ABE=x2xx1x1=.
【解析】(Ⅰ)证明平面ABC1⊥平面A1C,只需证明A1C⊥平面ABC1;
(Ⅱ)取AA1中点F,连EF,FD,证明平面EFD∥平面ABC1 , 则有ED∥平面ABC1 , 利用等体积转换,可求三棱锥E﹣ABC1的体积.
【考点精析】解答此题的关键在于理解平面与平面垂直的判定的相关知识,掌握一个平面过另一个平面的垂线,则这两个平面垂直.
练习册系列答案
相关题目
【题目】甲、乙两同学5次综合测评的成绩如茎叶图所示.
甲 | 乙 | |||||
9 | 8 | 8 | 3 | 3 | 7 | |
2 | 1 | 0 | 9 | ● | 9 |
老师在计算甲、乙两人平均分时,发现乙同学成绩的一个数字无法看清.若从{0,1,2,…,9}随机取一个数字代替,则乙的平均成绩超过甲的平均成绩的概率为( )
A.
B.
C.
D.