题目内容
17.在三棱锥P-ABC中,$\overrightarrow{PA}=\vec a$,$\overrightarrow{PB}=\vec b$,$\overrightarrow{PC}=\vec c$,E为棱AB的中点,则$\overrightarrow{CE}$等于( )A. | $\frac{1}{2}\vec a+\frac{1}{2}\vec b+\vec c$ | B. | $\vec a+\vec b-\frac{1}{2}\vec c$ | C. | $\frac{1}{2}\vec a+\frac{1}{2}\vec b-\vec c$ | D. | $\frac{1}{2}\vec a+\vec b-\frac{1}{2}\vec c$ |
分析 根据向量加法和减法的运算法则,以及向量中点的公式进行求解即可.
解答 解:$\overrightarrow{CE}$=$\overrightarrow{PE}$-$\overrightarrow{PC}$=$\frac{1}{2}$($\overrightarrow{PA}$+$\overrightarrow{PB}$)-$\overrightarrow{PC}$=$\frac{1}{2}\vec a+\frac{1}{2}\vec b-\vec c$,
故选:C
点评 本题主要考查平面向量的基本定理,根据向量加法和减法的运算法则是解决本题的关键.
练习册系列答案
相关题目
7.通过随机询问110名性别不同的大学生是否爱好某项运动,计算Χ2≈7.6参照参考数据,得到的正确结论是( )
A. | 有99%以上的把握认为“爱好该项运动与性别有关” | |
B. | 有99%以上的把握认为“爱好该项运动与性别无关” | |
C. | 有90%以上的把握认为“爱好该项运动与性别有关” | |
D. | 有90%以上的把握认为“爱好该项运动与性别无关” |
12.定义在R上的函数y=f(x)是减函数,且对任意的a∈R,都有f(-a)+f(a)=0,若x、y满足不等式f(x2-2x)+f(2y-y2)≤0,则当1≤x≤4时,x-2y的最小值为( )
A. | -4 | B. | -1 | C. | 0 | D. | 8 |
6.两直线3x-4y-3=0和6x-8y+19=0之间的距离为( )
A. | 2 | B. | $\frac{3}{2}$ | C. | $\frac{5}{2}$ | D. | 3 |
7.过点(-2,0),且斜率为1的直线l与圆x2+y2=5相交于M、N两点,则线段MN的长为( )
A. | 2$\sqrt{2}$ | B. | 3 | C. | 2$\sqrt{3}$ | D. | 6 |