题目内容
【题目】如图,已知椭圆C的中心为原点O,F(﹣2 ,0)为C的左焦点,P为C上一点,满足|OP|=|OF|且|PF|=4,则椭圆C的方程为( )
A. =1
B. =1
C. =1
D. =1
【答案】C
【解析】解:由题意可得c=2 ,
设右焦点为F′,由|OP|=|OF|=|OF′|知,∠PFF′=∠FPO,∠OF′P=∠OPF′,
所以∠PFF′+∠OF′P=∠FPO+∠OPF′,
由∠PFF′+∠OF′P+∠FPO+∠OPF′=180°知,∠FPO+∠OPF′=90°,即PF⊥PF′.
在Rt△PFF′中,由勾股定理,得|PF′|= = =8,
由椭圆定义,得|PF|+|PF′|=2a=4+8=12,从而a=6,得a2=36,
于是 b2=a2﹣c2=36﹣ =16,
所以椭圆的方程为 1.
故选:C.
设椭圆的右焦点为F′,由|OP|=|OF|及椭圆的对称性知,△PFF′为直角三角形;由勾股定理,得|PF′|;由椭圆的定义,得a2;由b2=a2﹣c2 , 得b2;然后根据椭圆标准方程的形式,直接写出椭圆的方程.
练习册系列答案
相关题目