题目内容
【题目】已知复数z=bi(b∈R),是纯虚数,i是虚数单位.
(1)求复数z;
(2)若复数(m+z)2所表示的点在第二象限,求实数m的取值范围.
【答案】(1);(2)
【解析】
(1)由z=bi(b∈R),化简为.根据是纯虚数,可得b,可得z的值.
(2)化简 (m+z)2,根据复数所表示的点在第二象限,列出关于m的不等式组,解不等式组求得实数m的取值范围.
(1)∵z=bi(b∈R),∴.
又∵是纯虚数,∴,
∴b=2,即z=2i.
(2)∵z=2i,m∈R,∴(m+z)2=(m+2i)2=m2+4mi+4i2=(m2﹣4)+4mi,
又∵复数所表示的点在第二象限,∴,
解得0<m<2,即m∈(0,2)时,复数所表示的点在第二象限.
【题目】按照我国《机动车交通事故责任强制保险条例》规定,交强险是车主必须为机动车购买的险种,若普通7座以下私家车投保交强险第一年的费用(基准保费)统一为元,在下一年续保时,实行的是保费浮动机制,保费与上一、二、三个年度车辆发生道路交通事故的情况相关联,发生交通事故的次数越多,费率也就越高,具体浮动情况如下表:
交强险浮动因素和浮动费率比率表 | ||
投保类型 | 浮动因素 | 浮动比率 |
上一个年度未发生有责任道路交通事故 | 下浮10% | |
上两个年度未发生有责任道路交通事故 | 下浮20% | |
上三个及以上年度未发生有责任道路交通事故 | 下浮30% | |
上一个年度发生一次有责任不涉及死亡的道路交通事故 | 0% | |
上一个年度发生两次及两次以上有责任不涉及死亡的道路交通事故 | 上浮10% | |
上一个年度发生有责任道路交通死亡事故 | 上浮30% |
某机构为了研究某一品牌普通7座以下私家车的投保情况,随机抽取了80辆车龄已满三年的该品牌同型号私家车在下一年续保时的情况,统计得到了下面的表格:
类型 | ||||||
数量 | 20 | 10 | 10 | 20 | 15 | 5 |
以这80辆该品牌车的投保类型的频率代替一辆车投保类型的概率,完成下列问题:
(1)某家庭有一辆该品牌车且车龄刚满三年,记为该车在第四年续保时的费用,求的分布列;
(2)某销售商专门销售这一品牌的二手车,且将下一年的交强险保费高于基准保费的车辆记为事故车.
①若该销售商购进三辆(车龄已满三年)该品牌二手车,求这三辆车中至少有2辆事故车的概率;
②假设购进一辆事故车亏损4000元,一辆非事故盈利8000元,若该销售商一次购进100辆(车龄已满三年)该品牌二手车,求其获得利润的期望值.
【题目】汽车制造商在2019年年初公告:公司计划2019年的生产目标为43万辆.已知该公司近三年的汽车生产量如表所示:
年份(年) | 2016 | 2017 | 2018 |
产量(万辆) | 8 | 18 | 30 |
如果我们分别将2016,2017,2018,2019定义为第一、二、三、四年.现在有两个函数模型:二次函数模型,指数型函数模型,哪个模型能更好地反映该公司年产量y与年份x的关系?