题目内容
【题目】《九章算术》是中国古代第一部数学专著,成于公元一世纪左右,系统总结了战国、秦、汉时期的数学成就.其中《方田》一章中记载了计算弧田(弧田就是由圆弧和其所对弦所围成弓形)的面积所用的经验公式:弧田面积=(弦×矢+矢×矢),公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差.按照上述经验公式计算所得弧田面积与其实际面积之间存在误差.现有圆心角为
,弦长为
的弧田.其实际面积与按照上述经验公式计算出弧田的面积之间的误差为( )平方米.(其中
,
)
A. 15 B. 16 C. 17 D. 18
【答案】B
【解析】分析:先根据经验公式计算出弧田的面积,再利用扇形面积减去三角形面积得实际面积,最后求两者之差.
详解:因为圆心角为,弦长为
,所以圆心到弦的距离为
半径为40,
因此根据经验公式计算出弧田的面积为,
实际面积等于扇形面积减去三角形面积,为,
因此两者之差为,选B.
![](http://thumb.zyjl.cn/images/loading.gif)
【题目】为加快新能源汽车产业发展,推进节能减排,国家对消费者购买新能源汽车给予补贴,其中对纯电动乘用车补贴标准如表:
新能源汽车补贴标准 | |||
车辆类型 | 续驶里程R(公里) | ||
100≤R<180 | 180≤R<280 | <280 | |
纯电动乘用车 | 2.5万元/辆 | 4万元/辆 | 6万元/辆 |
某校研究性学习小组,从汽车市场上随机选取了M辆纯电动乘用车,根据其续驶里程R(单次充电后能行驶的最大里程)作出了频率与频数的统计表:
分组 | 频数 | 频率 |
100≤R<180 | 3 | 0.3 |
180≤R<280 | 6 | x |
R≥280 | y | z |
合计 | M | 1 |
(1)求x、y、z、M的值;
(2)若从这M辆纯电动乘用车任选3辆,求选到的3辆车续驶里程都不低于180公里的概率;
(3)如果以频率作为概率,若某家庭在某汽车销售公司购买了2辆纯电动乘用车,设该家庭获得的补贴为X(单位:万元),求X的分布列和数学期望值E(X).
【题目】2018年2月25日第23届冬季奥动会在韩国平昌闭幕,中国以金
银
铜的成绩结束本次冬奥会的征程,某校体育爱好者协会对某班进行了“本届冬奥会中国队表现”的满意度调查(结果只有“满意”和“不满意”两种),按分层抽样从该班学生中随机抽取了
人,具体的调查结果如下表:
某班 | 满意 | 不满意 |
男生 | ||
女生 |
(1)若该班女生人数比男生人数多人,求该班男生人数和女生人数;
(2)若从该班调查对象的女生中随机选取人进行追踪调查,记选中的
人中“满意”的人数为
,求
时对应事件的概率.