题目内容

5.某普通高中为了了解学生的视力状况,随机抽查了100名高二年级学生和100名高三年级学生,对这些学生配戴眼镜的度数(简称:近视度数)进行统计,得到高二学生的频数分布表和高三学生频率分布直方图如下:
近视度数0-100100-200200-300300-400400以上
学生频数304020100
将近视程度由低到高分为4个等级:当近视度数在0-100时,称为不近视,记作0;当近视度数在100-200时,称为轻度近视,记作1;当近视度数在200-400时,称为中度近视,记作2;当近视度数在400以上时,称为高度近视,记作3.
(Ⅰ)从该校任选1名高二学生,估计该生近视程度未达到中度及以上的概率;
(Ⅱ)设a=0.0024,从该校任选1名高三学生,估计该生近视程度达到中度或中度以上的概率;
(Ⅲ)把频率近似地看成概率,用随机变量X,Y分别表示高二、高三年级学生的近视程度,若EX=EY,求b.

分析 (Ⅰ)由频率分布表得到从该校任选1名高二学生,该生近视程度未达到中度及以上的频率得答案;
(Ⅱ)由频率分布直方图结合频率和为1求得从该校任选1名高三学生,估计该生近视程度达到中度或中度以上的概率;
(Ⅲ)分别求出EX、EY,由EX=EY求得b的值.

解答 解:(Ⅰ)由频数分布表可知,从该校任选1名高二学生,该生近视程度未达到中度及以上的频率为$\frac{70}{100}=0.7$,
则估计该生近视程度未达到中度及以上的概率为0.7;
(Ⅱ)若a=0.0024,则(0.003+0.0024+b+0.001+2×0.0005)×100=1,解得:b=0.0026.
则从该校任选1名高三学生,该生近视程度达到中度或中度以上的频率为(0.0026+0.001+2×0.0005)×100=0.46,
则从该校任选1名高三学生,估计该生近视程度达到中度或中度以上的概率为0.46;
(Ⅲ)由频率分布表可得:P(X=0)=100a,P(X=1)=0.3,P(X=2)=100b+0.1,P(X=3)=0.1,
由频率分布直方图得:P(Y=0)=0.3,P(Y=1)=0.4,P(Y=2)=0.3,P(Y=3)=0,
则EX=1×0.3+200b+0.2+3×0.1=200b+0.8,
EY=1×0.4+2×0.3=1.
由EX=EY,得200b+0.8=1,解得:b=0.001.

点评 本题考查频率分布表,考查了频率分布直方图,考查了随机变量的分布列及其数学期望,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网