题目内容
(本小题满分12分)
如图,函数f1(x)=A sin(wx+j)(A>0,w>0,|j|<)的一段图象,过点(0,1).(1)求函数f1(x)的解析式;(2)将函数y=f1(x)的图象按向量=平移,得到函数y=f2(x),求y=f1(x)+f2(x)的最大值,并求此时自变量x的集合.
如图,函数f1(x)=A sin(wx+j)(A>0,w>0,|j|<)的一段图象,过点(0,1).(1)求函数f1(x)的解析式;(2)将函数y=f1(x)的图象按向量=平移,得到函数y=f2(x),求y=f1(x)+f2(x)的最大值,并求此时自变量x的集合.
(1)2sin(2x+) (2)
(1)由图知:T=-(-)=,
于是w==2.……………2分
设f1(x)=A sin(2x+j),
将函数f(x)=A sin2x的图象向左平移,
得f1(x)=A sin(2x+j)的图象,······················································· 3分
则j=2×=,f1(x)=A sin(2x+).······································ 4分
将(0,1)代入f1(x)=A sin(2x+),易得A=2.····························· 6分
故f1(x)=2sin(2x+);·································································· 7分
(2)依题意:f2(x)=2sin=-2cos,······················ 8分
∴y=2sin-2cos=2sin.····························· 11分
当2x-=2+,即x=+,k∈时,ymax=2.
此时,x的取值集合为.………… 12分
于是w==2.……………2分
设f1(x)=A sin(2x+j),
将函数f(x)=A sin2x的图象向左平移,
得f1(x)=A sin(2x+j)的图象,······················································· 3分
则j=2×=,f1(x)=A sin(2x+).······································ 4分
将(0,1)代入f1(x)=A sin(2x+),易得A=2.····························· 6分
故f1(x)=2sin(2x+);·································································· 7分
(2)依题意:f2(x)=2sin=-2cos,······················ 8分
∴y=2sin-2cos=2sin.····························· 11分
当2x-=2+,即x=+,k∈时,ymax=2.
此时,x的取值集合为.………… 12分
练习册系列答案
相关题目