题目内容

(本小题满分12分)
如图,函数f1x)=A sin(wx+j)(A>0,w>0,|j|<)的一段图象,过点(0,1).(1)求函数f1x)的解析式;(2)将函数yf1x)的图象按向量平移,得到函数yf2x),求yf1x)+f2x)的最大值,并求此时自变量x的集合.
(1)2sin(2x) (2)
(1)由图知:T-(-)=
于是w==2.……………2分
f1x)=A sin(2x+j),
将函数fx)=A sin2x的图象向左平移
f1x)=A sin(2x+j)的图象,······················································· 3分
则j=2×f1x)=A sin(2x).······································ 4分
将(0,1)代入f1x)=A sin(2x),易得A=2.····························· 6分
f1x)=2sin(2x);·································································· 7分
(2)依题意:f2x)=2sin=-2cos,······················ 8分
y=2sin-2cos=2sin.····························· 11分
当2x=2,即xk时,ymax=2
此时,x的取值集合为.…………       12分
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网