题目内容
【题目】设函数,,其中,为正实数.
(1)若的图象总在函数的图象的下方,求实数的取值范围;
(2)设,证明:对任意,都有.
【答案】(1) (2)证明见解析
【解析】
(1)据题意可得在区间上恒成立,利用导数讨论函数的单调性,从而求出满足不等式的的取值范围;(2)不等式整理为,由(1)可知当时,,利用导数判断函数的单调性从而证明在区间上成立,从而证明对任意,都有.
(1)解:因为函数的图象恒在的图象的下方,
所以在区间上恒成立.
设,其中,
所以,其中,.
①当,即时,,
所以函数在上单调递增,,
故成立,满足题意.
②当,即时,设,
则图象的对称轴,,,
所以在上存在唯一实根,设为,则,,,
所以在上单调递减,此时,不合题意.
综上可得,实数的取值范围是.
(2)证明:由题意得,
因为当时,,,
所以.
令,则,
所以在上单调递增,,即,
所以,从而.
由(1)知当时,在上恒成立,整理得.
令,则要证,只需证.
因为,所以在上单调递增,
所以,即在上恒成立.
综上可得,对任意,都有成立.
练习册系列答案
相关题目
【题目】“初中数学靠练,高中数学靠悟”.总结反思自己已经成为数学学习中不可或缺的一部分,为了了解总结反思对学生数学成绩的影响,某校随机抽取200名学生,抽到不善于总结反思的学生概率是0.6.
(1)完成列联表(应适当写出计算过程);
(2)试运用独立性检验的思想方法分析是否有的把握认为学生的学习成绩与善于总结反思有关.
统计数据如下表所示:
不善于总结反思 | 善于总结反思 | 合计 | |
学习成绩优秀 | 40 | ||
学习成绩一般 | 20 | ||
合计 | 200 |
参考公式:其中