题目内容
【题目】为预防H1N1病毒暴发,某生物技术公司研制出一种新流感疫苗,为测试该疫苗的有效性(若疫苗有效的概率小于90%,则认为测试没有通过),公司选定2000个流感样本分成三组,测试结果如表:
A组 | B组 | C组 | |
疫苗有效 | 673 | x | y |
疫苗无效 | 77 | 90 | z |
已知在全体样本中随机抽取1个,抽到B组疫苗有效的概率是0.33.
(1)求x的值;
(2)现用分层抽样的方法在全体样本中抽取360个测试结果,问应在C组抽取多少个?
(3)已知y≥465,z≥25,求不能通过测试的概率.
【答案】
(1)解:∵在全体样本中随机抽取1个,抽到B组疫苗有效的概率是0.33.
∴ =0.33,
∴x=660
(2)解:C组样本个数是y+z=2000﹣(673+77+660+90)=500
用分层抽样方法在全体中抽取360个测试结果,应在C组抽取的个数为360× =90
(3)解:由题意知本题是一个等可能事件的概率,
设测试不能通过事件为M,
C组疫苗有效与无效的可能情况有(465,35)(466,34)(467,33)
(468,32)(469,31)(470,30)共有6种结果,
满足条件的事件是(465,35)(466,34)共有2个
根据等可能事件的概率知P=
【解析】(1)根据在抽样过程中每个个体被抽到的概率相等,得到要求的数字与样本容量之间的比值等于0.33,做出结果.(2)做出每个个体被抽到的概率,利用这一组的总体个数,乘以每个个体被抽到的概率,得到要求的结果数.(3)本题是一个等可能事件的概率,C组疫苗有效与无效的可能情况有(465,35)(466,34)(467,33)(468,32)(469,31)(470,30)共有6种结果,满足条件的事件是(465,35)(466,34)共有2个,得到概率.
练习册系列答案
相关题目