题目内容
【题目】已知函数y=f(x)是R上的偶函数,且当x≤0时,f(x)=log (1﹣x)+x.
(1)求f(1)的值;
(2)求函数y=f(x)的表达式,并直接写出其单调区间(不需要证明);
(3)若f(lga)+2<0,求实数a的取值范围.
【答案】
(1)解:f(1)=f(﹣1)=﹣2
(2)解:令x>0,则﹣x<0,
则f(﹣x)= log (1+x)﹣x=f(x),
故x>0时,f(x)= log (1+x)﹣x,
故f(x)= ;
故f(x)在(﹣∞,0]递增,在(0,+∞)递减
(3)解:若f(lga)+2<0,即f(lga)<﹣2,
lga>0时,f(lga)<f(1),则lga>1,
lga<0时,f(lga)<f(﹣1),则lga<﹣1,
故lga>1或lga<﹣1,
解得:a>10或0<a<
【解析】(1)根据函数的奇偶性求出f(1)即f(﹣1)的值即可;(2)令x>0,得到﹣x<0,根据函数的奇偶性求出f(x)的解析式,从而求出函数的单调区间即可;(3)问题转化为f(lga)<﹣2,得到关于a的不等式,解出即可.
练习册系列答案
相关题目
【题目】为预防H1N1病毒暴发,某生物技术公司研制出一种新流感疫苗,为测试该疫苗的有效性(若疫苗有效的概率小于90%,则认为测试没有通过),公司选定2000个流感样本分成三组,测试结果如表:
A组 | B组 | C组 | |
疫苗有效 | 673 | x | y |
疫苗无效 | 77 | 90 | z |
已知在全体样本中随机抽取1个,抽到B组疫苗有效的概率是0.33.
(1)求x的值;
(2)现用分层抽样的方法在全体样本中抽取360个测试结果,问应在C组抽取多少个?
(3)已知y≥465,z≥25,求不能通过测试的概率.