题目内容
【题目】已知椭圆的短轴端点到右焦点的距离为2.
(Ⅰ)求椭圆的方程;
(Ⅱ)过点的直线交椭圆于两点,交直线于点,若, ,求证: 为定值.
【答案】(1) ;(2)详见解析.
【解析】试题分析:(Ⅰ)利用椭圆的几何要素间的关系进行求解;(Ⅱ)联立直线和椭圆的方程,得到关于或的一元二次方程,利用根与系数的关系和平面向量的线性运算进行证明.
试题解析:(Ⅰ)由题意有: ,且,
所以, .
所以椭圆的方程为.
(Ⅱ)由题意直线过点,且斜率存在,设方程为,
将代人得点坐标为,
由,消元得,
设, ,则且,
方法一:因为,所以.
同理,且与异号,
所以
.
所以, 为定值.
方法二:由题意,当时, (若:不妨设,加一分)
有,且,
所以,且
所以,同理.
从而
.
当时,同理可得.
所以, 为定值.
方法三:由题意直线过点,设方程为 ,
将代人得点坐标为,
由 消元得,
设, ,则且,
因为,所以.
同理,且与异号,
所以
.
又当直线与轴重合时, ,
所以, 为定值.
【题目】2017年年底,某商业集团根据相关评分标准,对所属20家商业连锁店进行了年度考核评估,并依据考核评估得分(最低分60分,最高分100分)将这些连锁店分别评定为A,B,C,D四个类型,其考核评估标准如下表:
评估得分 | [60,70) | [70,80) | [80,90) | [90,100] |
评分类型 | D | C | B | A |
考核评估后,对各连锁店的评估分数进行统计分析,得其频率分布直方图如下:
(Ⅰ)评分类型为A的商业连锁店有多少家;
(Ⅱ)现从评分类型为A,D的所有商业连锁店中随机抽取两家做分析,求这两家来自同一评分类型的概率.
【题目】为预防H1N1病毒暴发,某生物技术公司研制出一种新流感疫苗,为测试该疫苗的有效性(若疫苗有效的概率小于90%,则认为测试没有通过),公司选定2000个流感样本分成三组,测试结果如表:
A组 | B组 | C组 | |
疫苗有效 | 673 | x | y |
疫苗无效 | 77 | 90 | z |
已知在全体样本中随机抽取1个,抽到B组疫苗有效的概率是0.33.
(1)求x的值;
(2)现用分层抽样的方法在全体样本中抽取360个测试结果,问应在C组抽取多少个?
(3)已知y≥465,z≥25,求不能通过测试的概率.