题目内容
13.如图所示,ABCD是正方形,O是正方形的中心,PO⊥底面ABCD,底面边长为a,E是PC的中点.(1)求证:PA∥面BDE;平面PAC⊥平面BDE;
(2)若二面角E-BD-C为30°,求四棱锥P-ABCD的体积.
分析 (1)连结EO,证明PA∥EO,可得PA∥面BDE;证明BD⊥平面PAC,可得平面PAC⊥平面BDE;
(2)求出四棱锥的高,即可求四棱锥P-ABCD的体积.
解答 (1)证明:连结EO
∵四边形ABCD是正方形,O是正方形的中心
∴BD⊥AC=O,AO=CO
∵在△PAC中,E为PC的中点,∴PA∥EO
又∵EO?平面BDE,PA?平面BDE
∴PA∥平面BDE;
∵PO⊥底面ABCD,BD?平面ABCD
∴PO⊥BD
又∵BD⊥AC,AC∩PO=E,PO?平面PAC,AC?平面PAC
∴BD⊥平面PAC
又∵BD?平面BDE
∴平面PAC⊥平面BDE;
(2)解:由(1)可知,∠EOC=30°,∴∠OPC=60°,
∵底面边长为a,
∴CO=$\frac{\sqrt{2}}{2}$a,
∴PO=$\frac{\sqrt{6}}{6}$a,
∴四棱锥P-ABCD的体积=$\frac{1}{3}{a}^{2}•\frac{\sqrt{6}}{6}a$=$\frac{\sqrt{6}}{18}{a}^{3}$.
点评 本题考查线面平行,平面与平面垂直的判定,考查四棱锥P-ABCD的体积,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关题目
2.已知f(x)是定义在R上奇函数,且当x>0时.f(x)=-ax+a2-1 若f(x)在R上是减函数,关于a描述正确的是( )
A. | a=$\sqrt{2}$ | B. | 1<a≤$\sqrt{2}$ | C. | a≥$\sqrt{2}$ | D. | a∈(0,1)∪(1,$\sqrt{2}$) |
3.已知定义在R上的函数f(x)满足f(x)=f(2-x),其图象经过点(2,0),且对任意x${\;}_{{1}_{\;}}$,x2∈(1,+∞),且x1≠x2,(x1-x2)[f(x1)-f(x2)]>0恒成立,则不等式(x-1)f(x)≥0的解集为( )
A. | (-∞,1] | B. | [1,+∞) | C. | (-∞,0]∪[1,2] | D. | [0,1]∪[2,+∞) |