题目内容
【题目】(本小题满分12分,(Ⅰ)小问6分,(Ⅱ)小问6分)一家公司计划生产某种小型产品的月固定成本为万元,每生产万件需要再投入万元.设该公司一个月内生产该小型产品万件并全部销售完,每万件的销售收入为万元,且每万件国家给予补助万元. (为自然对数的底数,是一个常数.)
(Ⅰ)写出月利润(万元)关于月产量(万件)的函数解析式;
(Ⅱ)当月生产量在万件时,求该公司在生产这种小型产品中所获得的月利润最大值(万元)及此时的月生产量值(万件). (注:月利润=月销售收入+月国家补助-月总成本).
【答案】(Ⅰ);
(Ⅱ)月生产量在万件时,该公司在生产这种小型产品中所获得的月利润最大值为,此时的月生产量值为(万件)
【解析】
试题(Ⅰ)根据题设条件:月利润=月销售收入+月国家补助-月总成本,可得利润(万元)关于月产量(万件)的函数解析式;
(Ⅱ)先求函数的导数,再利用导数的符号判断函数在的单调性并进一步据此求出其最大值及最大值点.
试题解析:解:(Ⅰ)由于:月利润=月销售收入+月国家补助-月总成本,可得
(Ⅱ)的定义域为,
且
列表如下:
+ | - | ||
增 | 极大值 | 减 |
由上表得:在定义域上的最大值为.
且.即:月生产量在万件时,该公司在生产这种小型产品中所获得的月利润最大值为,此时的月生产量值为(万件).
【题目】在2018、2019每高考数学全国Ⅰ卷中,第22题考查坐标系和参数方程,第23题考查不等式选讲.2018年髙考结束后,某校经统计发现:选择第22题的考生较多并且得分率也较高.为研究2019年选做题得分情况,该校高三质量检测的命题完全采用2019年高考选做题模式,在测试结束后,该校数学教师对全校高三学生的选做题得分进行抽样统计,得到两题得分的统计表如下(已知每名学生只选做—道题):
第22题的得分统计表
得分 | 0 | 3 | 5 | 8 | 10 |
理科人数 | 50 | 50 | 75 | 125 | 200 |
文科人数 | 25 | 25 | 125 | 0 | 25 |
第23题的得分统计表
得分 | 0 | 3 | 5 | 8 | 10 |
理科人数 | 30 | 52 | 58 | 60 | 200 |
文科人数 | 5 | 10 | 10 | 5 | 70 |
(1)完成如下2×2列联表,并判断能否有99%的把握认为“选做题的选择”与“文、理科的科类”有关;
选做22题 | 选做23题 | 总计 | |
理科人数 | |||
文科人数 | |||
总计 |
(2)若以全体高三学生选题的平均得分作为决策依据,如果你是考生,根据上面统计数据,你会选做哪道题,并说明理由.
附:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |