题目内容

【题目】设△ABC的三个内角A,B,C所对的边分别为a,b,c.已知sin
(Ⅰ)求角A的大小;
(Ⅱ)若a=2,求b+c的最大值.

【答案】解法一:(Ⅰ)由已知有sinA
故sinA=cosA,tanA=
又0<A<π,
所以A=.…(5分)
(Ⅱ)由正弦定理得b=,c=
故b+c=(sinB+sinC).sinB+sinC=sinB+(-B)=sinB+sincosB-cossinB=sinB+cosB
=sin(B+).
所以b+c=4sin(B+).
因为,所以
∴当B+=即B=时,sin(B+)取得最大值1,
b+c取得最大值4.…(12分)
解法二:(Ⅰ)同解法一.
(Ⅱ)由余弦定理a2=b2+c2﹣2bccosA得,4=b2+c2﹣bc,
所以4=(b+c)2﹣3bc,即
∴(b+c)2≤16,故b+c≤4.
所以,当且仅当b=c,即△ABC为正三角形时,b+c取得最大值4.
【解析】解法一:(Ⅰ)由已知利用两角差的正弦公式展开可求tanA,结合0<A<π,可求A
(Ⅱ)由正弦定理得b= , c= , 则有b+c=(sinB+sinC),结合(I)中的A可得B+C,代入上式,然后结合和差角及辅助角公式可求
解法二:(Ⅰ)同解法一.
(Ⅱ)由余弦定理a2=b2+c2﹣2bccosA,结合(I)中A可得,b,c的关系,然后利用基本不等式即可求
【考点精析】根据题目的已知条件,利用两角和与差的余弦公式和两角和与差的正弦公式的相关知识可以得到问题的答案,需要掌握两角和与差的余弦公式:;两角和与差的正弦公式:

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网