题目内容
【题目】已知函数f(x)=1-(a>0且a≠1)是定义在(-∞,+∞)上的奇函数.
(1)求a的值;
(2)证明:函数f(x)在定义域(-∞,+∞)内是增函数;
(3)当x∈(0,1]时,tf(x)≥2x-2恒成立,求实数t的取值范围.
【答案】(1)a=2(2)见解析(3)[0,+∞).
【解析】
(1)由于为上的奇函数,利用性质,即可求出的值.
(2)利用定义法即可证明的单调性.
(3)利用分离参数法,然后构造函数,利用换元法,结合其单调性,即可求出最大值,从而求出的范围.
解:(1)函数(且)是定义在上的奇函数,
,解得:,经检验满足.
(2)证明:设为定义域上的任意两个实数,且,则
又,
;
,即;
∴函数在定义域内是增函数;
(3)由(1)得,当时,;
∴当时,恒成立,
等价于对任意的恒成立,
令,即;
当时成立,即在上的最大值,
易知在上单增
∴当时有最大值,
所以实数的取值范围是.
练习册系列答案
相关题目