题目内容
【题目】在直角坐标系中,圆经过伸缩变换后得到曲线.以坐标原点为极点,轴的正半轴为极轴,并在两种坐标系中取相同的单位长度,建立极坐标系,直线的极坐标方程为.
(1)求曲线的直角坐标方程及直线的直角坐标方程;
(2)设点是上一动点,求点到直线的距离的最大值.
【答案】(1),;(2)
【解析】
(Ⅰ)由经过伸缩变换,可得曲线的方程,由极坐标方程可得直线的直角坐标方程.
(Ⅱ)因为椭圆的参数方程为 (为参数),所以可设点,
由点到直线的距离公式,点到直线的距离为由三角函数性质可求点到直线的距离的最大值.
(Ⅰ)由经过伸缩变换,可得曲线的方程为,即,由极坐标方程可得直线的直角坐标方程为.
(Ⅱ)因为椭圆的参数方程为 (为参数),所以可设点,
由点到直线的距离公式,点到直线的距离为(其中,),由三角函数性质知,当时,点到直线的距离有最大值.
【题目】为了了解某省各景点在大众中的熟知度,随机对15~65岁的人群抽样了人,回答问题“某省有哪几个著名的旅游景点?”统计结果如下图表
组号 | 分组 | 回答正确 的人数 | 回答正确的人数 占本组的频率 |
第1组 | [15,25) | 0.5 | |
第2组 | [25,35) | 18 | |
第3组 | [35,45) | 0.9 | |
第4组 | [45,55) | 9 | 0.36 |
第5组 | [55,65] | 3 |
(1)分别求出的值;
(2)从第2,3,4组回答正确的人中用分层抽样的方法抽取6人,求第2,3,4组每组各抽取多少人?
(3)在(2)抽取的6人中随机抽取2人,求所抽取的人中恰好没有第3组人的概率.
【题目】近年电子商务蓬勃发展, 年某网购平台“双”一天的销售业绩高达亿元人民币,平台对每次成功交易都有针对商品和快递是否满意的评价系统.从该评价系统中选出次成功交易,并对其评价进行统计,网购者对商品的满意率为,对快递的满意率为,其中对商品和快递都满意的交易为次.
(1)根据已知条件完成下面的列联表,并回答能否有的把握认为“网购者对商品满意与对快递满意之间有关系”?
对快递满意 | 对快递不满意 | 合计 | |
对商品满意 | |||
对商品不满意 | |||
合计 |
(2)若将频率视为概率,某人在该网购平台上进行的次购物中,设对商品和快递都满意的次数为随机变量,求的分布列和数学期望.
附: (其中为样本容量)