题目内容
【题目】为了检测某轮胎公司生产的轮胎的宽度,需要抽检一批轮胎(共10个轮胎),已知这批轮胎宽度(单位: )的折线图如下图所示:
(1)求这批轮胎宽度的平均值;
(2)现将这批轮胎送去质检部进行抽检,抽检方案是:从这批轮胎中任取5个作检验,这5个轮胎的宽度都在内,则称这批轮胎合格,如果抽检不合格,就要重新再抽检一次,若还是不合格,这批轮胎就认定不合格.
求这批轮胎第一次抽检就合格的概率;
记为这批轮胎的抽检次数,求的分布列及数学期望.
【答案】(1)195(mm)(2)2
【解析】试题分析:(1)由平均值的定义求平均值,即。(2)由频率估计概率,这批轮胎宽度都在内的个数为6,总数为10,由古典概型可得。由题意可知的可能取值为1,2, ,由+ =1,可算出,写出分布列。
试题解析:(1)这批轮胎宽度的平均值为
.
(2)这批轮胎宽度都在内的个数为6,
故这批轮胎第一次抽检就合格的概率为.
的可能取值为1,2, , .
则的分布列为:
故.
练习册系列答案
相关题目
【题目】某校在高二年级实行选课走班教学,学校为学生提供了多种课程,其中数学学科提供5种不同层次的课程,分别称为数学1、数学2、数学3、数学4、数学5,每个学生只能从5种数学课程中选择一种学习,该校高二年级1800名学生的数学选课人数统计如表:
课程 | 数学1 | 数学2 | 数学3 | 数学4 | 数学5 | 合计 |
选课人数 | 180 | 540 | 540 | 360 | 180 | 1800 |
为了了解数学成绩与学生选课情况之间的关系,用分层抽样的方法从这1800名学生中抽取10人进行分析.
(1)从选出的10名学生中随机抽取3人,求这3人中至少有2人选择数学2的概率;
(2)从选出的10名学生中随机抽取3人,记这3人中选择数学2的人数为,选择数学1的人数为,设随机变量,求随机变量的分布列和数学期望.