题目内容

已知数列{an}满足a1=3,an+1anp·3n(n∈N*p为常数),a1a2+6,a3成等差数列.
(1)求p的值及数列{an}的通项公式;
(2)设数列{bn}满足bn,证明:bn.
(1)an=3n(2)
a1=3,an+1anp·3n,得a2=3+3pa3a2+9p=3+12p.
a1a2+6,a3成等差数列,∴a1a3=2(a2+6),即3+3+12p=2(3+3p+6),得p=2.
依题意知,an+1an+2×3n
n≥2时,a2a1=2×31a3a2=2×32,…,anan-1=2×3n-1.
等号两边分别相加得ana1=2(31+32+…+3n-1)=2×=3n-3,
ana1=3n-3,∴an=3n(n≥2).
a1=3适合上式,故an=3n.
(2)证明:∵an=3n,∴bn.
bn+1bn (n∈N*).
若-2n2+2n+1<0,则n>
即当n≥2时,有bn+1<bn.
又因为b1b2<.故bn
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网