题目内容

定义在区间上的函数f (x)满足:对任意的
都有. 求证f (x)为奇函数;
证明略
欲证明为奇函数,就要证明,但这是抽象函数,应设法充
分利用条件“对任意的,都有”中的进行合理
“赋值”
x = y = 0,则
f (0) + f (0) =
       f (0) = 0
x∈(-1, 1) ∴-x∈(-1, 1)
f (x) + f (-x) = f () = f (0) = 0
f (-x) =-f (x)
f (x) 在(-1,1)上为奇函数
对于抽象函数的奇偶性问题,解决的关键是巧妙进行“赋值”,而抽象函数的不等式问题,要灵活利用已知条件,尤其是f (x1) -f (x2) = f (x1) + f (-x2)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网