题目内容
已知双曲线=1(a>0,b>0)的左、右焦点分别为F1,F2,点O为双曲线的中心,点P在双曲线右支上,△PF1F2内切圆的圆心为Q,圆Q与x轴相切于点A,过F2作直线PQ的垂线,垂足为B,则下列结论成立的是( )
A.|OA|>|OB| B.|OA|<|OB|
C.|OA|=|OB| D.|OA|与|OB|大小关系不确定
C
【解析】由于点Q为三角形PF1F2内切圆的圆心,故过点F2作PQ的垂线并延长交PF1于点N,易知垂足B为F2N的中点,连接OB,则|OB|=|F1N|=(|F1P|-|F2P|)=a,又设内切圆与PF1,PF2分别切于G,H,则由内切圆性质可得|PG|=|PH|,|F1G|=|F1A|,|F2A|=|F2H|,故|F1P|-|F2P|=|F1A|-|F2A|=2a,设|OA|=x,则有x+c-(c-x)=2a,解得|OA|=a,故有|OA|=|OB|=a,故选C.
练习册系列答案
相关题目
某车间将10名技工平均分成甲、乙两组加工某种零件,在单位时间内每个技工加工的合格零件数如下表:
| 1号 | 2号 | 3号 | 4号 | 5号 |
甲组 | 4 | 5 | x | 9 | 10 |
乙组 | 5 | 6 | 7 | y | 9 |
(1)已知两组技工在单位时间内加工的合格零件平均数为7,分别求出甲、乙两组技工在单位时间内加工的合格零件的方差,并由此分析两组技工的加工水平;
(2)质检部门从该车间甲、乙两组中各随机抽取一名技工,对其加工的零件进行检测,若2人加工的合格零件个数之和超过14,则称该车间“质量合格”,求该车间“质量合格”的概率.