题目内容
一个与球心距离为1的平面截球体所得的圆面面积为π,则球的体积为( )
A. B. C. D.8π
A
【解析】由题意,球的半径为R=,故其体积V=π()3=,选A.
已知双曲线=1(a>0,b>0)的左、右焦点分别为F1,F2,点O为双曲线的中心,点P在双曲线右支上,△PF1F2内切圆的圆心为Q,圆Q与x轴相切于点A,过F2作直线PQ的垂线,垂足为B,则下列结论成立的是( )
A.|OA|>|OB| B.|OA|<|OB|
C.|OA|=|OB| D.|OA|与|OB|大小关系不确定
已知直线l1:ax-y+2a+1=0和l2:2x-(a-1)y+2=0(a∈R),则l1⊥l2的充要条件是a=________.
已知三棱锥P-ABC的各顶点均在一个半径为R的球面上,球心O在AB上,PO⊥平面ABC,,则三棱锥与球的体积之比为________.
已知正方体的棱长为1,其俯视图是一个面积为1的正方形,侧视图是一个面积为的矩形,则该正方体的正视图的面积等于( )
A. B.1 C. D.
已知在递增等差数列{an}中,a1=2,a1,a3,a7成等比数列,{bn}的前n项和为Sn,且Sn=2n+1-2.
(1)求数列{an}、{bn}的通项公式;
(2)设cn=abn,求数列{cn}的前n项和Tn.
已知数列{an}满足an+1=an-an-1(n≥2),a1=1,a2=3,记Sn=a1+a2+…+an,则下列结论正确的是( )
A.a100=-1,S100=5 B.a100=-3,S100=5
C.a100=-3,S100=2 D.a100=-1,S100=2
已知函数f(x)=asin+btan (a,b为常数,x∈R).若f(1)=1,则不等式f(31)>log2x的解集为________.
设数列{bn}满足bn+2=-bn+1-bn(n∈N*),b2=2b1.
(1)若b3=3,求b1的值;
(2)求证数列{bnbn+1bn+2+n}是等差数列;
(3)设数列{Tn}满足:Tn+1=Tnbn+1(n∈N*),且T1=b1=-,若存在实数p,q,对任意n∈N*都有p≤T1+T2+T3+…+Tn<q成立,试求q-p的最小值.