题目内容

设无穷等差数列{an}的前n项和为Sn.
(Ⅰ)若首项,公差,求满足的正整数k;
(Ⅱ)求所有的无穷等差数列{an},使得对于一切正整数k都有成立
(Ⅰ)            (Ⅱ)见解析

【错解分析】本小题主要考查数列的基本知识,以及运用数学知识分析和解决问题的能力.学生在解第(Ⅱ)时极易根据条件“对于一切正整数k都有成立”这句话将k取两个特殊值确定出等差数列的首项和公差,但没有认识到求解出的等差数列仅是对已知条件成立的必要条件,但不是条件成立的充分条件。还应进一步的由特殊到一般。
【正解】解:(I)当
,即  又.
(II)设数列{an}的公差为d,则在中分别取k=1,2,得

由(1)得
成立         ,
故所
数列不符合题意.当

.
综上,共有3个满足条件的无穷等差数列:
①{an} : an=0,即0,0,0,…;②{an} : an=1,即1,1,1,…; ③{an} : an=2n-1,即1,3,5,…,
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网