题目内容
(本小题满分12分)已知二次函数,,的最小值为.⑴ 求函数的解析式;⑵ 设,若在上是减函数,求实数的取值范围;
⑴ . ⑵.
解析
(本小题满分12分)(1)化简;(2)已知且,求的值.
(本小题满分12分) 已知函数f(x)=(1)作出函数的图像简图,并指出函数的单调区间;(2)若f(2-a2)>f(a),求实数a的取值范围.
画出函数的图象,并求其函数的值域。
已知函数。(1)求的最小正周期和单调递增区间;(2)将按向量平移后图像关于原点对称,求当最小时的。
(本题满分12分)定义在R上的偶函数满足,时,。(1)求时,的解析式;(2)求证:函数在区间上递减。
(本题满分10分) 如图,有一块矩形空地,要在这块空地上辟一个内接四边形为绿地,使其四个顶点分别落在矩形的四条边上,已知AB=(>2),BC=2,且AE=AH=CF=CG,设AE=,绿地面积为.(1)写出关于的函数关系式,并指出这个函数的定义域;(2)当AE为何值时,绿地面积最大?
.已知函数 是奇函数. (1)求实数的值;(2)若函数在区间上单调递增,求实数的取值范围.
某品牌电视生产厂家有A、B两种型号的电视机参加了家电下乡活动,若厂家A、B对两种型号的电视机的投放金额分别为p、q万元,农民购买电视机获得的补贴分别为p、lnq万元,已知A、B两种型号的电视机的投放总额为10万元,且A、B两种型号的电视机的投放金额均不低于1万元,请你制定一个投放方案,使得在这次活动中农民得到的补贴最多,并求出最大值(精确到0.1,参考数据:).