题目内容
(本题满分10分) 如图,有一块矩形空地,要在这块空地上辟一个内接四边形为绿地,使其四个顶点分别落在矩形的四条边上,已知AB=(>2),BC=2,且AE=AH=CF=CG,
设AE=,绿地面积为.
(1)写出关于的函数关系式,并指出这个函数的定义域;
(2)当AE为何值时,绿地面积最大?
(1)SΔAEH=SΔCFG=x2, SΔBEF=SΔDGH=(-x)(2-x)
∴y=SABCD-2SΔAEH-2SΔBEF=2-x2-(-x)(2-x)=-2x2+(+2)x
∴y=-2x2+(+2)x,0<x≤2
(2)当,即<6时,则x=时,y取最大值
当≥2,即≥6时,y=-2x2+(+2)x,在0,2]上是增函数,
则x=2时,y取最大值2-4
综上所述:当<6时,AE=时,绿地面积取最大值
当≥6时,AE=2时,绿地面积取最大值2-4
解析
练习册系列答案
相关题目