题目内容
【题目】有一个长方形木块,三个侧面积分别为8,12,24,现将其削成一个正四面体模型,则该正四面体模型棱长的最大值为( )
A.2B.C.4D.
【答案】B
【解析】
先求长方体从同一顶点出发的三条棱的长度,从而可得正四面体模型棱长的最大值.
设长方体从同一顶点出发的三条棱的长分别为,则,故,
若能从该长方体削得一个棱长最长的正四面体模型,
则该四面体的顶点必在长方体的面内,
过正四面体的顶点作垂直于长方体的棱的垂面切割长方体,
含正四面体的几何体必为正方体, 故正四面体的棱长为正方体的面对角线的长,
而从长方体切割出一个正方体,使得面对角线的长最大,
需以最小棱长为切割后的正方体的棱长切割才可,
故所求的正四面体模型棱长的最大值.
故选:B.
【题目】每个国家对退休年龄都有不一样的规定,从2018年开始我国关于延迟退休的话题一直在网上热议,为了了解市民对“延迟退休”的态度,现从某地市民中随机选取100人进行调查,调查情况如下表:
年龄段(单位:岁) | ||||||
被调查的人数 | ||||||
赞成的人数 |
(1)从赞成“延迟退休”的人中任选1人,此人年龄在的概率为,求出表格中的值;
(2)在被调查的人中,年龄低于35岁的人可以认为“低龄人”,年龄不低于35岁的人可以认为“非低龄人”,试作出是否赞成“延迟退休”与“低龄与否”的列联表,并指出有无的把握认为是否赞成“延迟退休”与“低龄与否”有关,并说明理由.
附:.
【题目】随着共享单车的成功运营,更多的共享产品逐步走人大家的世界,共享汽车、共享篮球、共享充电宝等各种共享产品层出不穷,某公司随机抽取1000人对共享产品是否对日常生活有益进行了问卷调查,并对参与调查的1000人中的性别以及意见进行了分类,得到的数据如下表所示:
男 | 女 | 总计 | |
认为共享产品对生活有益 | |||
认为共享产品对生活无益 | |||
总计 |
(1)求出表格中的值,并根据表中的数据,判断能否在犯错误的概率不超过的前提下,认为对共享产品的态度与性别有关系?
(2)现按照分层抽样从认为共享产品对生活无益的人员中随机抽取6人,再从6人中随机抽取2人赠送超市购物券作为答谢,求恰有1人是女性的概率.
参考公式:.
【题目】大荔县某高中一社团为调查学生学习围棋的情况,随机抽取了名学生进行调查.根据调查结果绘制的学生均学习围棋时间的频率分布直方图.将日均学习围棋时不低于分钟的学生称为“围棋迷”.
非围棋迷 | 围棋迷 | 合计 | |
男 | |||
女 | |||
合计 |
(1)根据已知条件完成下面的列联表,并据此资料你是否有的把握认为“围棋迷”与性别有关?
(2)现在从参与本次抽样调查的名学生的男同学里面,依据是否为围棋迷,采用分层抽样的方法抽取名学生参与围棋知识竞赛,再从人中任选人参与知识竞赛的赛前保障工作.求选到的人恰好是一个“围棋迷”和一个“非围棋迷”的概率?
附:,