题目内容
在数列
中,已知
(
.
(Ⅰ)求
及
;
(Ⅱ)求数列
的前
项和
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020116877481.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020116908804.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020116939572.png)
(Ⅰ)求
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020116955315.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020116971348.png)
(Ⅱ)求数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020116986604.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020117002297.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020117017373.png)
(Ⅰ)
,
=2n。
(Ⅱ)
。
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020117033412.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020116971348.png)
(Ⅱ)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020117064949.png)
试题分析:(Ⅰ)因为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020116908804.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020116939572.png)
所以当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020117095357.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020117111652.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020117033412.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020117142435.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020117173564.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020116877481.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020116971348.png)
(Ⅱ)因为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020117205653.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020116986604.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020117002297.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020117017373.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240201172831081.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240201172981171.png)
两式相减得:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240201173141372.png)
=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020117329989.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020117345750.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020117064949.png)
点评:中档题,涉及数列的通项公式的确定,往往利用已知条件,建立相关元素的方程组。“分组求和法”“裂项相消法”“错位相减法”是高考常常考查的数列的求和方法。
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目
题目内容