题目内容
已知数列
的前
项和
(
为正整数)。
(1) 令
,求证:数列
是等差数列,并求数列
的通项公式;
(2) 令
,
,求使得
成立的最小正整数
,并证明你的结论.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015957504485.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015957520297.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015957535873.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015957520297.png)
(1) 令
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015957582585.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015957598491.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015957504485.png)
(2) 令
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015957613663.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015957629654.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015957660572.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015957520297.png)
(1)![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240159576911173.png)
(2)最小正整数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240159576911173.png)
(2)最小正整数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015957707395.png)
试题分析:解:(1)在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015957722869.png)
令n=1,可得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015957738634.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015957754481.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015957785435.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240159577851791.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240159578001277.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240159578161477.png)
又
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015957832587.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015957863502.png)
于是
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240159576911173.png)
(2)由(1)得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240159578941006.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240159579101689.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240159579251954.png)
由①-②得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240159579411567.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240159579561834.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015957972739.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240159579881250.png)
下面证明数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015958003488.png)
∵
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015957972739.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015958034799.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240159580341636.png)
∴数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015958003488.png)
所以, 使得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015957660572.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015957707395.png)
点评:主要是考查了等比数列的求和的运用,属于基础题。
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目