ÌâÄ¿ÄÚÈÝ
15£®ÊýÁÐ{an}Âú×ãa1¡Ê£¨0£¬1£©£¬an+1=-a${\;}_{n}^{2}$+an+c£¨n¡ÊN*£©£¨1£©Ö¤Ã÷£º¡°¶ÔÈÎÒâa1¡Ê£¨0£¬1£©£¬an¡Ê£¨0£¬1£©¡±µÄ³äÒªÌõ¼þÊÇ¡°c¡Ê[0£¬$\frac{3}{4}$£©¡±
£¨2£©Èôa1=$\frac{1}{5}$£¬c=0£¬ÊýÁÐ{bn}Âú×ãbn=$\frac{1}{1-{a}_{n}}$£¬ÉèTn=b1+b2+¡+bn£¬Rn=b1•b2¡bn£¬Èô¶ÔÈÎÒâµÄn¡Ý10£¬
n¡ÊN*£¬²»µÈʽkn-n2£¨5Rn-Tn£©¡Ý2015µÄ½â¼¯·Ç¿Õ£¬ÇóÂú×ãÌõ¼þµÄʵÊýkµÄ×îСֵ£®
·ÖÎö £¨1£©±ØÒªÐÔ£º${a}_{2}=-£¨{a}_{1}-\frac{1}{2}£©^{2}+c+\frac{1}{4}$£¬ÓÉa1¡Ê£¨0£¬1£©£¬¿ÉµÃa2¡Ê$£¨c£¬c+\frac{1}{4}]$£¬ÓÉ$£¨c£¬c+\frac{1}{4}]$⊆£¨0£¬1£©£¬¼´¿ÉµÃ³öcµÄÈ¡Öµ·¶Î§£®
³ä·ÖÐÔ£ºÓÃÊýѧ¹éÄÉ·¨Ö¤Ã÷¼´¿É£®
£¨2£©ÓÉ£¨1£©Öªan¡Ê£¨0£¬1£©£¬¿ÉµÃbn=$\frac{1}{1-{a}_{n}}$=$\frac{{a}_{n}}{{a}_{n}-{a}_{n}^{2}}$=$\frac{{a}_{n}}{{a}_{n+1}}$£¬ÀûÓá°ÀÛ³ËÇó»ý¡±¿ÉµÃRn£»ÓÖbn=$\frac{{a}_{n}}{{a}_{n+1}}$=$\frac{{a}_{n}^{2}}{{a}_{n}{a}_{n+1}}$=$\frac{{a}_{n}-{a}_{n+1}}{{a}_{n}{a}_{n+1}}$=-$£¨\frac{1}{{a}_{n}}-\frac{1}{{a}_{n+1}}£©$£¬ÀûÓá°ÁÑÏîÇóºÍ¡±¿ÉµÃTn=$\frac{1}{{a}_{n+1}}$-5£®»¯¼òÕûÀíÔÙÀûÓûù±¾²»µÈʽµÄÐÔÖʼ´¿ÉµÃ³ö£®
½â´ð ½â£¨1£©±ØÒªÐÔ£º${a}_{2}=-£¨{a}_{1}-\frac{1}{2}£©^{2}+c+\frac{1}{4}$£¬ÓÉa1¡Ê£¨0£¬1£©£¬¿ÉµÃa2¡Ê$£¨c£¬c+\frac{1}{4}]$£¬
ÓÉ$£¨c£¬c+\frac{1}{4}]$⊆£¨0£¬1£©£¬µÃc¡Ê$[0£¬\frac{3}{4}£©$£®
³ä·ÖÐÔ£ºÓÃÊýѧ¹éÄÉ·¨Ö¤Ã÷£®
¢Ùn=1³ÉÁ¢£¬n=2ʱ£¬${a}_{2}=-£¨{a}_{1}-\frac{1}{2}£©^{2}+c+\frac{1}{4}$£¬ÓÉa1¡Ê£¨0£¬1£©£¬c¡Ê$[0£¬\frac{3}{4}£©$£¬µÃa2¡Ê£¨0£¬1£©£»
¢ÚÉèn=kʱ£¬ak¡Ê£¨0£¬1£©£¬
Ôòµ±n=k+1ʱ£¬ak+1=-$£¨{a}_{k}-\frac{1}{2}£©^{2}$+c+$\frac{1}{4}$£¬ÓÉak¡Ê£¨0£¬1£©£¬c¡Ê$[0£¬\frac{3}{4}£©$£¬µÃak+1¡Ê£¨0£¬1£©£»
´Ó¶ø£¬¶ÔÈÎÒân¡ÊN*£¬an¡Ê£¨0£¬1£©£®
×ÛÉÏ£¬ÔÌâ³äÒªÐÔµÃÖ¤£®
£¨2£©ÓÉ£¨1£©Öªan¡Ê£¨0£¬1£©£¬¡àbn=$\frac{1}{1-{a}_{n}}$=$\frac{{a}_{n}}{{a}_{n}-{a}_{n}^{2}}$=$\frac{{a}_{n}}{{a}_{n+1}}$£¬¡àRn=b1•b2¡bn=$\frac{{a}_{1}}{{a}_{2}}•\frac{{a}_{2}}{{a}_{3}}$•¡•$\frac{{a}_{n}}{{a}_{n+1}}$=$\frac{{a}_{1}}{{a}_{n+1}}$=$\frac{1}{5{a}_{n+1}}$£®ÓÖbn=$\frac{{a}_{n}}{{a}_{n+1}}$=$\frac{{a}_{n}^{2}}{{a}_{n}{a}_{n+1}}$=$\frac{{a}_{n}-{a}_{n+1}}{{a}_{n}{a}_{n+1}}$=-$£¨\frac{1}{{a}_{n}}-\frac{1}{{a}_{n+1}}£©$£¬
Tn=-$[£¨\frac{1}{{a}_{1}}-\frac{1}{{a}_{2}}£©+£¨\frac{1}{{a}_{2}}-\frac{1}{{a}_{3}}£©$+¡+$£¨\frac{1}{{a}_{n}}-\frac{1}{{a}_{n+1}}£©]$=-$£¨\frac{1}{{a}_{1}}-\frac{1}{{a}_{n+1}}£©$=$\frac{1}{{a}_{n+1}}$-5£®
¡à5Rn-Tn=5£¬
¡àkn-n2£¨5Rn-Tn£©¡Ý2015£¬»¯Îªk¡Ý5n+$\frac{2015}{n}$£¬
ÓÉÓÚ¶ÔÈÎÒân¡Ý10£¬n¡ÊN*Óн⣬
µ±n=20£¬5n+$\frac{2015}{n}$=$200+\frac{3}{4}$£»µ±n=21£¬5n+$\frac{2015}{n}$=200+$\frac{20}{21}$£¾200+$\frac{3}{4}$£®
¡àkmin=200.75£®
µãÆÀ ±¾Ì⿼²éÁ˳äÒªÌõ¼þ¡¢Êýѧ¹éÄÉ·¨¡¢¡°ÀÛ³ËÇó»ý¡±¡¢¡°ÁÑÏîÇóºÍ¡±¡¢»ù±¾²»µÈʽµÄÐÔÖÊ¡¢ºã³ÉÁ¢ÎÊÌâµÄµÈ¼Ûת»¯·½·¨£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
A£® | f£¨x£©ÎªÅ¼º¯ÊýÇÒ×îСÕýÖÜÆÚΪ¦Ð | B£® | f£¨x£©ÎªÆ溯ÊýÇÒ×îСÕýÖÜÆÚΪ¦Ð | ||
C£® | f£¨x£©ÎªÅ¼º¯ÊýÇÒ×îСÕýÖÜÆÚΪ2¦Ð | D£® | f£¨x£©ÎªÆ溯ÊýÇÒ×îСÕýÖÜÆÚΪ2¦Ð |
A£® | $\sqrt{3}$+1 | B£® | $\sqrt{2}$+1 | C£® | $\sqrt{3}$ | D£® | 2 |
A£® | ³äÒªÌõ¼þ | B£® | ³ä·Ö²»±ØÒªÌõ¼þ | ||
C£® | ±ØÒª²»³ä·ÖÌõ¼þ | D£® | ¼È²»³ä·ÖÒ²²»±ØÒªÌõ¼þ |