题目内容
【题目】已知函数图象的一条切线为.
(1)设函数,讨论的单调性;
(2)若函数的图象恒与x轴有两个不同的交点M(,0),N(,0),求证:.
【答案】(1)见解析;(2)见解析
【解析】分析:(1)先根据导数几何意义得切点坐标,代入函数解析式得,再求的导数,根据b讨论导函数零点,进而得单调性,(2)先求导数,转化为+>2,再构造函数,x∈(1,2),利用导数易得(x)在(1,2)上单调递增,即得()>(1)=0,即()>(2),最后根据()=(),证得结论成立.
详解:(1),设切点,则切线斜率
∴,即切点,故,
∴
∴
①当时,,∴增区间,无减区间;
②当时,令,得;令,得
∴增区间,减区间
(2)依题意及(1)得函数,则,
∴当0<x<1时,;当x>1时,,
∴函数在区间(0,1)上单调递增,在区间(1,+∞)上单调递减,
∴
∵函数的图象恒与x轴有两个不同的交点M(,0),N(,0),
且当x趋近于0时,趋近于∞,当x趋近于+∞时,趋近于∞,
∴1m>0,m<1,且≠,
故不妨设<,则0<<1<.
要证()<0,需证>1,即+>2,
当≥2时,显然成立.
当1<<2时,令,x∈(1,2),
∵,∴(x)=ln xln(2x)2x+2,
=+2=>0,x∈(1,2),
∴(x)在(1,2)上单调递增,∴()>(1)=0,即()>(2),
又由题意知()=(),∴()>(2).
∵在(0,1)上单调递增,∈(0,1),2∈(0,1),
∴>2,即+>2.综上可得,+>2,即证.
【题目】“微信运动”是由腾讯开发的一个类似计步数据库的公众账号.用户可以通过关注“微信运动”公众号查看自己及好友每日行走的步数、排行榜,也可以与其他用户进行运动量的或点赞.现从某用户的“微信运动”朋友圈中随机选取40人,记录他们某一天的行走步数,并将数据整理如下:
步数/步 | 0~2000 | 2001~5000 | 5001~8000 | 8001~10000 | 10000以上 |
男性人数/人 | 1 | 6 | 9 | 5 | 4 |
女性人数/人 | 0 | 3 | 6 | 4 | 2 |
规定:用户一天行走的步数超过8000步时为“运动型”,否则为“懈怠型”.
(1)将这40人中“运动型”用户的频率看作随机抽取1人为“运动型”用户的概率.从该用户的“微信运动”朋友圈中随机抽取4人,记为“运动型”用户的人数,求和的数学期望;
(2)现从这40人中选定8人(男性5人,女性3人),其中男性中“运动型”有3人,“懈怠型”有2人,女性中“运动型”有2人,“懈怠型”有1人.从这8人中任意选取男性3人、女性2人,记选到“运动型”的人数为,求的分布列和数学期望.
【题目】高铁、网购、移动支付和共享单车被誉为中国的“新四大发明”,彰显出中国式创新的强劲活力.某移动支付公司从我市移动支付用户中随机抽取100名进行调查,得到如下数据:
每周移动支付次数 | 1次 | 2次 | 3次 | 4次 | 5次 | 6次及以上 |
男 | 10 | 8 | 7 | 3 | 2 | 15 |
女 | 5 | 4 | 6 | 4 | 6 | 30 |
合计 | 15 | 12 | 13 | 7 | 8 | 45 |
(Ⅰ)把每周使用移动支付超过3次的用户称为“移动支付活跃用户”,由以上数据完成下列列联表,并判断能否在犯错误的概率不超过0.005的前提下,认为“移动支付活跃用户”与性别有关?
移动支付活跃用户 | 非移动支付活跃用户 | 总计 | |
男 | |||
女 | |||
总计 | 100 |
(Ⅱ)把每周使用移动支付6次及6次以上的用户称为“移动支付达人”.为了做好调查工作,决定用分层抽样的方法从“移动支付达人”中抽取6人进行问卷调查,再从这6人中选派2人参加活动.求参加活动的2人性别相同的概率?
附公式及表如下:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |