题目内容
16.把正整数按“S”型排成了如图所示的三角形数表,第n行有n个数,对于第n行按从左往右的顺序依次标记第1列,第2列,…,第m列,(比如三角形数表中12在第5行第4列,18在第6行第3列),则三角形数表中2015在( )A. | 第63行第2列 | B. | 第62行第12列 | C. | 第64行第30列 | D. | 第64行第60列 |
分析 根据已知中的三角形数表,可得前n行共有$\frac{n(n+1)}{2}$个数,先确定2015所在的行数,再由该行数的排列规律判断出列数,可得答案.
解答 解:由三角形数表中第n行共有n个数,
故前n行共有1+2+3+…+n=$\frac{n(n+1)}{2}$个数,
又由$\frac{62(62+1)}{2}$<2015<$\frac{63(63+1)}{2}$,
故2015在第63行,该行数据从左到右依次变小,
且第一个数为$\frac{63(63+1)}{2}$=2016,
故2015在第63行第2列,
故选:A
点评 归纳推理的一般步骤是:(1)通过观察个别情况发现某些相同性质;(2)从已知的相同性质中推出一个明确表达的一般性命题(猜想).
练习册系列答案
相关题目
6.6本相同的数学书和3本相同的语文书分给9个人,每人1本,共有不同分法( )
A. | C${\;}_{9}^{3}$ | B. | A${\;}_{9}^{3}$ | C. | A${\;}_{9}^{6}$ | D. | A${\;}_{9}^{3}$•A${\;}_{3}^{3}$ |
7.某中学对高二甲、乙两个同类班级,进行“加强‘语文阅读理解’训练,对提高‘数学应用题’得分率的作用”的试验,其中甲班为试验班(加强语文阅读理解训练),乙班为对比班(常规教学,无额外训练),在试验前的测试中,甲、乙两班学生在数学应用题上的得分率基本一致,试验结束后,统计几次数学应用题测试的平均成绩(均取整数)如下表所示:
现规定平均成绩在80分以上(不含80分)的为优秀.
(I)试分析估计两个班级的优秀率;
(Ⅱ)由以上统计数据填写下面2x2列联表,根据以上数据,能杏有95%的把握认为“加强‘语文阅读理解’训练对提高‘数学应用题’得分率”有帮助?
参考公式及数据:x2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
60分以下 | 61-70分 | 71-80分 | 81-90分 | 91-100分 | |
甲班(人数) | 3 | 6 | 11 | 18 | |
12乙班(人数) | 7 | 13 | 10 | 10 | 10 |
(I)试分析估计两个班级的优秀率;
(Ⅱ)由以上统计数据填写下面2x2列联表,根据以上数据,能杏有95%的把握认为“加强‘语文阅读理解’训练对提高‘数学应用题’得分率”有帮助?
优秀人数 | 非优秀人数 | 合计 | |
甲班 | |||
乙班 | |||
合计 |
P(x2≥k0) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.028 | 0.010 | 0.005 | 0.001 |
k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
11.已知tan(π-x)=$\frac{3}{4}$,则tan2x等于( )
A. | $\frac{7}{24}$ | B. | -$\frac{7}{24}$ | C. | $\frac{24}{7}$ | D. | -$\frac{24}{7}$ |
8.若(2+x)7=a0+a1(x+1)+a2(x+1)2+…+a7(x+1)7,则a1+a3+a5+a7等于( )
A. | $\frac{127}{2}$ | B. | $\frac{255}{2}$ | C. | 64 | D. | 128 |
5.在△ABC中,若sin(A-B)=1+2cos(B+C)sin(A+C),则△ABC的形状一定是( )
A. | 等边三角形 | B. | 不含60°的等腰三角形 | ||
C. | 钝角三角形 | D. | 直角三角形 |