题目内容

【题目】已知函数,给出下列结论:

(1)若对任意,且,都有,则为R上减函数;

(2) 若为R上的偶函数,且在内是减函数, (-2)=0,则>0解集为(-2,2);

(3)若为R上的奇函数,则也是R上的奇函数;

(4)若一个函数定义域的奇函数,当时,,则当x<0时,其中正确的是____________________

【答案】

【解析】

由单调性的定义,即可判断(1);由偶函数的单调性可得f(x)在[0,+∞)上递增,f(x)>0即为f(|x|)>f(2),即有|x|>2,计算即可判断(2);由奇偶性的定义,即可判断(3);(4)根据x>0时的解析式,可设x<0,将-x>0代入已知的表达式,再由函数奇偶性得到x<0时的解析式即可.

对于(1),若对于任意x1,x2∈Rx1≠x2,都有,即当x1<x2时,f(x1)>f(x2),则f(x)为R上的减函数,则(1)对;

对于(2),若f(x)为R上的偶函数,且在(﹣∞,0)内是减函数,则f(x)在(0,+∞)上递增,f(2)=f(﹣2)=0,则f(x)>0即为f(|x|)>f(2),即有|x|>2,解得x>2x<﹣2,则(2)错;

对于(3),若f(x)为R上的奇函数,则f(﹣x)=﹣f(x),f(﹣x)f(|﹣x|)=﹣f(x)f(|x|),即有y=f(x)f(|x|)是奇函数,则正确

对于(4),,,x<0时,-x>0,=-f(x),

故答案为:

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网