题目内容
【题目】已知函数 .
(1)若函数在上是增函数,求正数的取值范围;
(2)当时,设函数的图象与x轴的交点为,,曲线在,两点处的切线斜率分别为,,求证:+ .
【答案】(1); (2)见解析.
【解析】
(1)由题意,求得函数的导数,设,分离参数转化为在上恒成立,设,利用导数求得函数的单调性,得到函数的最值,即可得到实数的取值范围;
(2)由,得,,不妨设,利用导数求得两点的斜率,得到+ ,设,利用导数求得函数的单调性与最大值,即可作出证明.
(1) ,∴,
设,
函数在上是增函数,∴ 在上恒成立,即在上恒成立,
设,则,
,∴,∴在上是增函数,
∴,由在上恒成立,得, ,
∴,即的取值范围是.
(2) ,由,得,,不妨设.
,,, + ,
设,则,时,,时,,所以为的极大值点,所以的极大值即最大值为,即,
∵且,∴且,
∴,∴+ .
练习册系列答案
相关题目
【题目】某商店每天(开始营业时)以每件15元的价格购入商品若干(商品在商店的保鲜时间为8小时,该商店的营业时间也恰好为8小时),并开始以每件30元的价格出售,若前6小时内所购进的商品没有售完,则商店对没卖出的商品将以每件10元的价格低价处理完毕(根据经验,2小时内完全能够把商品低价处理完毕,且处理完毕后,当天不再购进商品).该商店统计了100天商品在每天的前6小时内的销售量,由于某种原因销售量频数表中的部分数据被污损而不能看清,制成如下表格(注:视频率为概率).
前6小时内的销售量 (单位:件) | 3 | 4 | 5 |
频数 | 30 |
(1)若某天商店购进商品4件,试求商店该天销售商品获取利润的分布列和期望;
(2)若商店每天在购进4件商品时所获得的平均利润最大,求的取值集合.