题目内容
【题目】如图,已知五棱锥P-ABCDE,其中ABE,PCD均为正三角形,四边形BCDE为等腰梯形,BE=2BC=2CD=2DE=4,PB=PE=.
(Ⅰ)求证:平面PCD⊥平面ABCDE;
(Ⅱ)若线段AP上存在一点M,使得三棱锥P-BEM的体积为五棱锥P-ABCDE体积的,求AM的长.
【答案】(Ⅰ)证明略;(Ⅱ)AM=.
【解析】
(1)取CD中点O,根据正三角形性质得,再取BE中点N,根据勾股定理计算得,由线面垂直判定定理得平面,最后根据面面垂直判定定理得结论,(2)先作M到平面的垂线,再根据锥体体积公式计算AM的长.
(1)取CD中点O,BE中点N,连PN,ON.
因为PCD为正三角形,所以,,
因为PB=PE=BE=4,所以,
因为四边形BCDE为等腰梯形,所以,
因为,所以,
因为平面,所以平面,
因为平面,因此平面 平面,
(2)因为ABE为正三角形,四边形BCDE为等腰梯形,所以三点共线,
过M作 于,则,
因为平面,所以平面,
因为三棱锥P-BEM的体积为五棱锥P-ABCDE体积的,
所以
从而
【题目】近年来,共享单车在我国各城市迅猛发展,为人们的出行提供了便利,但也给城市的交通管理带来了一些困难,为掌握共享单车在省的发展情况,某调查机构从该省抽取了5个城市,并统计了共享单车的指标和指标,数据如下表所示:
城市1 | 城市2 | 城市3 | 城市4 | 城市5 | |
指标 | 2 | 4 | 5 | 6 | 8 |
指标 | 3 | 4 | 4 | 4 | 5 |
(1)试求与间的相关系数,并说明与是否具有较强的线性相关关系(若,则认为与具有较强的线性相关关系,否则认为没有较强的线性相关关系).
(2)建立关于的回归方程,并预测当指标为7时,指标的估计值.
(3)若某城市的共享单车指标在区间的右侧,则认为该城市共享单车数量过多,对城市的交通管理有较大的影响交通管理部门将进行治理,直至指标在区间内现已知省某城市共享单车的指标为13,则该城市的交通管理部门是否需要进行治理?试说明理由.
参考公式:回归直线中斜率和截距的最小二乘估计分别为
,,相关系数
参考数据:,,.