题目内容

19.三棱锥P-ABC,PC⊥面ABC,△PAC是等腰三角形,PA=4,AB⊥BC,CH⊥PB,垂足为H,D是PA的中点,则△CDH的面积最大时,CB的长是(  )
A.$\frac{\sqrt{5}}{3}$B.$\frac{2\sqrt{5}}{3}$C.$\frac{\sqrt{6}}{3}$D.$\frac{2\sqrt{6}}{3}$

分析 先证出△CHD是直角三角形,再利用基本不等式得出CH=DH=$\sqrt{2}$时△CDH的面积最大;
再利用三角形的等积法求出BC的值.

解答 解:三棱锥P-ABC中,PC⊥面ABC,AB?平面ABC,∴PC⊥AB;
又AB⊥BC,BC∩PC=C,
∴AB⊥平面PBC;
又CH?平面PBC,
∴AB⊥CH,
又CH⊥PB,
PB∩AB=B,
∴CH⊥平面PAB,
又DH?平面PAB,
∴CH⊥DH;
又△PAC是等腰直角三角形,且PA=4,D是PA的中点,
∴CD=$\frac{1}{2}$PA=2,
设CH=a,DH=b,
则a2+b2=CD2=4,
∴4=a2+b2≥2ab,
即$\frac{1}{2}$ab≤1,
当且仅当a=b=$\sqrt{2}$时,“=”成立,此时△CDH的面积最大;
在Rt△PBC,设BC=x,
则PB=$\sqrt{{PC}^{2}{+BC}^{2}}$=$\sqrt{{(2\sqrt{2})}^{2}{+x}^{2}}$=$\sqrt{8{+x}^{2}}$,
∴$\frac{1}{2}$PC•BC=$\frac{1}{2}$PB•CH,
即2$\sqrt{2}$•x=$\sqrt{8{+x}^{2}}$•$\sqrt{2}$;
解得x=$\frac{2\sqrt{6}}{3}$,
∴CB的长是$\frac{2\sqrt{6}}{3}$.
故选:D.

点评 本题考查了空间几何体的平行与垂直关系的应用问题,也考查了面积公式的应用问题,考查了利用基本不等式求最值的问题,是综合性题目.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网