题目内容
【题目】已知函数,其中为自然对数的底数.
(Ⅰ)当,时,证明:;
(Ⅱ)当时,讨论函数的极值点的个数.
【答案】(Ⅰ)见解析;(Ⅱ)见解析
【解析】试题分析:(Ⅰ)依题意,只要证,记,求得,分和讨论即可得到函数的单调性,进而得到结论;
(Ⅱ)由 ,记,,(1)当时,得到存在唯一,且当时,;当,,再分和和三种情形讨论,得到地产是有一个极大值点 和一个极小值点,(2)当时,显然在单调递减;在上单调递增,综上所述即可得到结论.
试题解析:
(Ⅰ)依题意,因为,只要证,
记,,则.
当时,,单调递减;
当时,,单调递增.
所以,即,原不等式成立.
(Ⅱ)
,
记,.
(1)当时,,在上单调递增,,,
所以存在唯一,,且当时,;当,,
①若,即时,对任意,,此时在上单调递增,无极值点.
②若,即时,此时当或时,.即在,上单调递增;当时,,即在上单调递减.
此时有一个极大值点和一个极小值点-1.
③若,即时,此时当或时,.即在,上单调递增;当时,,即在上单调递减.
此时有一个极大值点-1和一个极小值点.
(2)当时,,所以,显然在单调递减;在上单调递增.
综上可得:①当或时,有两个极值点;
②当时,无极值点;
③当时,有一个极值点.
【题目】“中国式过马路”存在很大的交通安全隐患.某调查机构为了解路人对“中国式过马路”的态度是否与性别有关,从马路旁随机抽取30名路人进行了问卷调查,得到了如下列联表:
项目 | 男性 | 女性 | 总计 |
反感 | 10 | ||
不反感 | 8 | ||
总计 | 30 |
已知在这30人中随机抽取1人抽到反感“中国式过马路”的路人的概率是.
(1)请将上面的列联表补充完整(直接写结果,不需要写求解过程),并据此资料分析反感“中国式过马路”与性别是否有关?
(2)若从这30人中的女性路人中随机抽取2人参加一活动,记反感“中国式过马路”的人数为X,求X的分布列和数学期望.
附:K2=
.
P(K2≥k0) | 0.10 | 0.05 | 0.010 | 0.005 |
k0 | 2.706 | 3.841 | 6.635 | 7.879 |