题目内容
【题目】已知椭圆具有如下性质:若、是椭圆上关于原点对称的两个点,点是椭圆上的任意一点,当直线、的斜率都存在,并记为、时,则与之积是与点位置无关的定值.试写出双曲线具有的类似的性质,并加以证明.
【答案】若M、N是双曲线:=1上关于原点对称的两个点,点P是双曲线上任意一点,当直线PM、PN的斜率都存在,并记为kPM,kPN时,那么kPM与kPN之积是与点P位置无关的定值.
【解析】
类似的性质为:若M、N是双曲线:=1上关于原点对称的两个点,点P是双曲线上任意一点,当直线PM、PN的斜率都存在,并记为kPM,kPN时,那么kPM与kPN之积是与点P位置无关的定值.证明如下:
设点M的坐标为(m,n),则点N的坐标为(-m,-n),其中=1.
又设点P的坐标为(x,y),由kPM=,kPN=,得kPM·kPN=·=,
将y2=x2-b2,n2=m2-b2代入得kPM·kPN=.
练习册系列答案
相关题目