题目内容
5.设函数f(x)=$\frac{2}{x}$-3lnx,则$\underset{lim}{△x→0}$$\frac{f(2+△x)-f(2)}{△x}$等于-2.分析 根据导数的定义可知$\underset{lim}{△x→0}$$\frac{f(2+△x)-f(2)}{△x}$=f′(2),求导,带值计算即可.
解答 解:$\underset{lim}{△x→0}$$\frac{f(2+△x)-f(2)}{△x}$=f′(2),
∵f′(x)=-$\frac{2}{{x}^{2}}$-$\frac{3}{x}$,
∴f′(2)=-$\frac{1}{2}$-$\frac{3}{2}$=-2,
故答案为:-2.
点评 本题考查了导数的定义和导数的运算法则,属于基础题.
练习册系列答案
相关题目
19.已知抛物线$y=\frac{1}{8}{x^2}$与双曲线$\frac{y^2}{a^2}-{x^2}=1(a>0)$有共同的焦点F,O为坐标原点,P在x轴上方且在双曲线上,则$\overrightarrow{OP}•\overrightarrow{FP}$的最小值为( )
A. | $3-2\sqrt{3}$ | B. | $2\sqrt{3}-3$ | C. | $-\frac{7}{4}$ | D. | $\frac{3}{4}$ |
20.已知(3x-1)n=a0+a1x+a2x2+a3x3+…+anxn(n∈N*),设(3x-1)n展开式的二项式系数和为Sn,Tn=a1+a2+a3+…+an(n∈N*),Sn与Tn的大小关系是( )
A. | Sn>Tn | |
B. | Sn<Tn | |
C. | n为奇数时,Sn<Tn,n为偶数时,Sn>Tn | |
D. | Sn=Tn |
20.已知向量$\overrightarrow a=(6,2)$,向量$\overrightarrow b=(x,3)$,且$\overrightarrow a$∥$\overrightarrow b$,则x=( )
A. | 1 | B. | 5 | C. | 9 | D. | 10 |
10.函数f(x)=-3x在区间[1,2]上的最小值是( )
A. | -9 | B. | -6 | C. | -3 | D. | -$\frac{1}{3}$ |
14.从含有8个个体的总体中抽取一个容量为4的样本,则总体中每个个体被抽到的概率是( )
A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{6}$ | D. | $\frac{1}{4}$ |