题目内容
1.在平面直角坐标系xoy中,区域D由不等式组$\left\{\begin{array}{l}{0≤x≤\sqrt{2}}\\{y≤2}\\{x≤\sqrt{2}y}\end{array}\right.$给定,点M(x,y)为D上的动点,则z=2x-y的最大值为4$\sqrt{2}$-2.分析 作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定z的最大值.
解答 解:作出不等式组对应的平面区域如图:(阴影部分ABC).
由z=2x-y得y=2x-z,
平移直线y=2x-z,
由图象可知当直线y=2x-z经过点C时,直线y=2x-z的截距最小,
此时z最大.
由$\left\{\begin{array}{l}{y=2}\\{x=\sqrt{2}y}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=2\sqrt{2}}\\{y=2}\end{array}\right.$,即C(2$\sqrt{2}$,2)
将C的坐标代入目标函数z=2x-y,
得z=4$\sqrt{2}$-2.即z=2x-y的最大值为4$\sqrt{2}$-2.
故答案为:4$\sqrt{2}$-2.
点评 本题主要考查线性规划的应用,结合目标函数的几何意义,利用数形结合的数学思想是解决此类问题的基本方法.
练习册系列答案
相关题目
6.在长方体ABCD-A1B1C1D1中,AB=$\sqrt{2}{,_{\;}}_{\;}BC=A{A_1}$=1,点P为对角线AC1上的动点,点Q为底面ABCD上的动点(点P,Q可以重合),则B1P+PQ的最小值为( )
A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | $\frac{3}{2}$ | D. | 2 |
13.以坐标原点O为顶点,x轴的正半轴为始边,角α,β,θ的终边分别为OA,OB,OC,OC为∠AOB的角平分线,若$tanθ=\frac{1}{3}$,则tan(α+β)=( )
A. | $\frac{1}{4}$ | B. | $\frac{1}{3}$ | C. | $\frac{2}{3}$ | D. | $\frac{3}{4}$ |
11.若i为虚数单位,则复数$\frac{i}{{\sqrt{3}-i}}$等于( )
A. | $-\frac{1}{2}+\frac{{\sqrt{3}}}{2}i$ | B. | $\frac{1}{2}+\frac{{\sqrt{3}}}{2}i$ | C. | $-\frac{1}{4}+\frac{{\sqrt{3}}}{4}i$ | D. | $\frac{1}{4}+\frac{{\sqrt{3}}}{4}i$ |